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AbstrAct
The past 10 years have witnessed the rapid 

growth of global mobile cellular traffic demands 
due to the popularity of mobile devices. While 
accurate traffic prediction becomes extreme-
ly important for stable and high-quality Internet 
service, the performance of existing methods 
is still poor due to three challenges: complicat-
ed temporal variations including burstiness and 
long periods, multi-variant impact factors such 
as the point of interest and day of the week, 
and potential spatial dependencies introduced 
by the movement of population. While existing 
traditional methods fail in characterizing these 
features, especially the latter two, deep learning 
models with powerful representation ability give 
us a chance to consider these from a new per-
spective. In this article, we propose Deep Traffic 
Predictor (DeepTP), a deep-learning-based end-to-
end model, which forecasts traffic demands from 
spatial-dependent and long-period cellular traffic. 
DeepTP consists of two components: a general 
feature extractor for modeling spatial dependen-
cies and encoding the external information, and a 
sequential module for modeling complicated tem-
poral variations. In the general feature extractor, 
we introduce a correlation selection mechanism 
for a spatial modeling and embedding mechanism 
to encode external information. Moreover, we 
apply a seq2seq model with attention mechanism 
to build the sequential model. Extensive experi-
ments based on large-scale mobile cellular traffic 
data demonstrate that our model outperforms the 
state-of-the-art traffic prediction models by more 
than 12.31 percent.

IntroductIon
Over the last 10 years, with the populari-
ty of mobile devices and mobile applications, 
the demand of mobile traffic has grown rapid-
ly around the world. According to the technical 
report from Cisco [1], the global cellular network 
traffic from mobile devices is expected to surpass 
48.3 EB (1018 B) per month in 2021. To provide 
stable Internet service with guaranteed quality 
of service (QoS) [2], predicting mobile traffic 
demands accurately becomes extremely import-
ant for both service and infrastructure providers. 
For example, with the help of accurate prediction 
of traffic demands, they can realize a timely traffic 
schedule to avoid traffic jams by pulling partial 
traffic demands away from busy cell towers to 
free ones.

By modeling it as a general time series fore-
casting problem, some research efforts [3–7] 
have been made to improve the performance 
of traffic demand forecasting. Seasonal AutoRe-
gression Integrated Moving Average (SARIMA) 
and support vector regression (SVR) are the most 
widely used methods in these works. However, 
SARIMA fails to capture the rapid traffic variation 
since it relies on the mean value of historical data. 
In addition, SARIMA cannot model the nonlin-
ear relationship in a real system. Although SVR 
can model the nonlinear relationship, it requires 
well-tuned key parameters to achieve accurate 
prediction results. Nevertheless, the major draw-
back of these methods is that they totally ignore 
potential correlations between traffic series, like 
spatial dependencies, which are very common 
and important in a mobile network. Due to the 
popularity of mobile networks, more and more 
people use their mobile devices to access cellular 
networks while moving. Thus, the traffic demand 
movement caused by human movement leads 
to remarkable spatial dependencies between the 
traffic of different base stations. Besides, the basic 
traffic demands in a specific area can be affected 
by the environment around it, like the point of 
interest (PoI) distribution and weekly effect, which 
are also beyond the ability of existing traditional 
methods. Even in capturing temporal character-
istics, existing traditional methods are limited to 
only keeping short memory because of the limited 
parameters and computing efficiency.  “Infinite” 
memory is impossible for them to model, while 
such long-term memory can be useful in practice. 
These observations encourage us to explore more 
powerful modeling tools to capture and charac-
terize them.

Recently, as a kind of specially designed neural 
network, the recurrent neural network (RNN) 
has been widely used to model complicated 
nonlinear sequence patterns, which achieves 
promising results in many fields, such as natu-
ral language processing, speech recognition, 
and video processing. Because of the gradient 
vanishing and the exploding risk of the gener-
al RNN, long short-term memory (LSTM) [8] 
is used in these tasks. Theoretically, the RNN 
is designed to be capable of capturing infinite 
temporal relations. Meanwhile, a neural network 
model is good at importing discrete factors into 
the model by directly encoding them as vectors. 
Hence, the RNN is regarded as a promising tool 
to model complicated traffic time series. Recent 
works [3, 5] utilize LSTM to model the traffic 
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flow for wireless networks. Furthermore, Wang 
et al. [5] applied an auto-encoder [8] to capture 
both local and global spatial dependencies of 
traffic between adjacent cell towers. However, 
their approach needs to preprocess the data for 
the neural network by projecting the traffic of 
each cell tower into a square, which limits its 
application scenarios and causes unnecessary 
errors. Besides, their auto-encoder can only 
model the adjacent spatial dependencies by pre-
designed adjacent areas, which are strict in a 
real system. Beyond the spatial-temporal relation-
ships, many other discrete factors also influence 
the trend and volume of mobile traffic, like the 
location of the cell tower and the PoI distribution 
of adjacent areas, which suggests the functions. 
Because of the heterogeneity and sparsity, no 
existing methods are designed for directly pro-
cessing the external information. Therefore, it is 
challenging to take these discrete factors into 
account in the forecasting model.

In this article, we propose DeepTP, a deep-
learning-based end-to-end framework for traf-
fic demands forecasting from heterogeneous 
and periodic traffic data of mobile networks. 
In DeepTP, we first design a general feature 
extractor to model the spatial relationship and 
external information from a new perspective. 
In this feature extractor, a discrete embedding 
module is designed to encode external informa-
tion, such as the PoI category and the day of the 
week, into a unified dense vector. Meanwhile, we 
build an attention-based module, which selects 
traffic features from other cell towers by the traf-
fic of a certain cell to represent their influence. 
The auto-selection is based on the “correlation” 
of these traffic histories, which is not only suit-
able for modeling the influence from adjacent cell 
towers but also capable of capturing distant spa-
tial relations. Particularly, our module mines two 
kinds of “correlations” from the traffic features: 
the “positive correlation,” which represents the 
influence of similar-traffic-pattern cell towers, and 
the “negative correlation,” which represents the 
influence of opposite-traffic-pattern cell towers. 
Finally, with the features from the general feature 
extractor, we utilize an LSTM-based RNN as the 
basic sequential model to capture the temporal 
information. Specifically, this sequential module 
is implemented by a seq2seq model with the 
attention mechanism. While the seq2seq model 
enables the multi-step prediction, the attention 
mechanism makes the sequential module observe 
more deeply and work robustly.

The contributions of this article can be summa-
rized as:
• We propose DeepTP, a deep-learning-based 

end-to-end framework to predict the traf-
fic demands of data from Shanghai, which 
includes about 10,000 base stations. The 
prediction results demonstrate that DeepTP 
outperforms state-of-the-art traffic predic-
tion models by more than 12.31 percent. 
DeepTP captures the spatial-temporal fea-
tures of the mobile cellular traffic and mod-
els the influence of external information for 
traffic prediction.
We structure the article as follows. We first 

introduce the challenges and overview of our 
investigated problem, followed by an overall visu-
alization of the temporal features of mobile big 
data. Then we introduce our end-to-end neural 
network framework for mobile cellular traffic pre-
diction. We then introduce the evaluation envi-
ronment with the dataset and also compare the 
performance of our system with the state-of-the-
art solutions. Finally, we summarize our study and 
discuss future work.

chAllenges And overvIew
For mobile traffic, as a kind of spatial-temporal 
series, its forecasting has to face similar key chal-
lenges of modeling sequential information as the 
traditional time series forecasting problem. Fur-
thermore, accurate forecasting requires address-
ing the challenges of modeling the complex and 
underlying spatial correlation and influence from 
external information.

Challenge 1: Complicated Temporal Varia-
tion: As the typical mobile traffic series shown 
in Fig. 1a, it is not only multi-level periodical but 
also highly bursty. Mobile traffic demands show 
a similar temporal trend as that of human daily 
life. Meanwhile, influenced by the natural burst-
iness of the Internet, mobile traffic demands 
also vary rapidly. Both of them make the 
mobile traffic series difficult to forecast. Exist-
ing methods like ARIMA and SVR fail to handle 
the burstiness. Recently, as a powerful sequen-
tial modelling tool, the RNN has applied for 
prediction in many sequence modeling tasks, 
including traffic forecasting, and has achieved 
promising results. Similarly, we choose the RNN 
as the basic component of our model to handle 
the complicated sequential information. Fur-
thermore, we apply two advanced structures, 
the seq2seq module and attention mechanism, 
to strengthen the model.

FIGURE 1. Multi-view distribution of mobile traffic in Shanghai: a) temporal distribution of the mobile traffic of two typical cells; b) spatial 
distribution of the mobile traffic at 17:00; c) probability distribution of the mobile traffic.

(a) (b) (c)
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Challenge 2: Multi-Variant Influence Factors: 
As Fig. 1c shows, the characteristics of traffic like 
volume among different base stations are total-
ly different. According to Wang et al. [10, 11], 
a lot of factors influence the traffic pattern of 
large-scale cell towers around a city. For exam-
ple, the traffic of a cell tower near transportation 
facilities can be highly bursty during rush hour, 
while those located in entertainment areas may 
grow rapidly in the evening. Different locations 
mean different service groups and city functions, 
which lead to totally different traffic demand pat-
terns. To solve this problem, traditional methods 
usually first cluster the traffic and train different 
independent predictors for different traffic pat-
terns. While working to some extent, the division 
solution causes the error spreading among two 
steps, and the clustering results in high interfer-
ence with the prediction accuracy. Therefore, we 
propose to directly encode these influence fac-
tors into the model by embedding. In this way, 
we can combine these two steps and optimize 
them together. Furthermore, with the help of 
embedding, we are able to take various discrete 
factors into consideration such as the day of the 
week and road density.

Challenge 3: Spatial Correlations among 
Base Stations: Different from the general time 
series forecasting problem, where different time 
series vary independently, the traffic variations of 
different base stations in a city are correlated (i.e., 
spatial correlations). As Fig. 1b shows, adjacent 
base stations share similar traffic patterns, while 
some faraway base stations share reversed traffic 
patterns. According to Xu et al. [12], the move-
ment of users who require and consume mobile 
traffic contributes to spatial correlations. In addi-
tion, cells located adjacently share similar infra-
structure and serve similar user groups with the 
same habits. Beyond the simple close spatial loca-
tions, cells that are distant can also be contacted 
because of their similar city function or the con-
nection of advanced transportation systems like 
subways and buses. On one hand, these various 
spatial correlations make it difficult to predict traf-

fic accurately. On the other hand, they also give 
us great chances to improve the performance of 
prediction by forecasting them together. How-
ever, limited by the capability of modeling tools, 
previous methods like ARIMA and SVR fail to 
handle the spatial correlations. Some researchers 
applied denoising auto-encoders [9] to model 
the spatial correlation and achieved interesting 
results. However, they can only capture the adja-
cent spatial correlation, and both of them are 
difficult to interpret for the forecasting results, 
which limits their application scenarios. Further-
more, their solution requires pre-defining the 
related cell towers by hand, which may introduce 
errors and cause prediction performance deterio-
ration. In this article, we design a spatial correla-
tion extractor by applying a “temporal attention” 
mechanism. With this auto-extractor, the spatial 
correlation beyond the constraint of adjacent 
locations is modeled, which makes the prediction 
results easy to interpret.

Figure 2 illustrates the basic intuition of our 
work. The heatmap in the upper left shows the 
spatial distribution of traffic at 5 p.m. in Shang-
hai, while the image in the lower left presents the 
function distribution of Shanghai. The right part 
shows three traffic series curves of three select-
ed base stations from 10,000 candidates. As 
the middle curve is the traffic we currently care 
about, traditional methods predict its future value 
only based on its own history without any spatial 
dependencies and external information. Besides, 
existing methods [6] take the spatial dependen-
cies into consideration to predict the future value 
by directly encoding the traffic of a fixed number 
adjacent cell towers. However, not all the adja-
cent cell towers influence the traffic trend of the 
current cell tower. Meanwhile, some distant base 
stations may also influence its traffic flow with the 
help of an advanced transportation system. To 
overcome the drawbacks of existing methods and 
model the mentioned potential spatial influence, 
we propose to design a specific module to not 
only model the adjacent spatial influence, defined 
as sync influence, but also model the distant spa-
tial influence, defined as supply influence. The 
details of the model are discussed later.

Model And solutIon
Figure 3 shows the framework of our DeepTP, 
which is a deep-learning-based end-to-end frame-
work for mobile cellular traffic prediction. It con-
sists of two components: the features extractor, 
which generates temporal features and spatial fea-
tures of the data traffic series, and the sequential 
module, which models the sequential relationship 
among the traffic features to derive the prediction 
result.

The input of our model consists of three parts: 
one primary traffic series, some auxiliary traffic 
series (selected from all the candidate traffic series 
based on distance), and discrete factors of pri-
mary traffic series like PoI distribution. At first, 
the traffic series are fed into a spatial correlation 
selector to generate one primary traffic feature 
series. Meanwhile, the discrete factors are fed 
into the discrete embedding module to generate 
external vectors. Further, external vectors are cop-
ied and concatenated with the primary traffic fea-
ture series. Then the sequential model takes this 

FIGURE 2. The intuition of our solution: considering the spatial dependencies and 
external information into modeling and forecasting.

T𝑛𝑛−1
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new future series as input to generate the future 
value step by step. The details of our models are 
as follows.

feAtures eXtrActor
As discussed above, the mobile cellular traffic is 
difficult to predict because of the complicated 
infl uential factors and comprehensive spatial-tem-
poral correlations. To handle these various fea-
tures, we design a features extractor module that 
employs the embedding and attention mecha-
nism. As Fig. 3a shows, the features extractor con-
sists of two modules:
• Spatial correlation selector, which models 

the infl uence from the adjacent and related 
areas of the cared area

• Discrete embedding module, which models 
the individual characters of the considered 
area itself
Spatial Correlation Selector: As presented in 

Fig. 3b, the spatial correlation selector adopts the 
traffic flow of the considered area (green box) 
and the traffi  c fl ow from other areas (blue, pink, 
and purple boxes) as the input and outputs of two 
kinds of spatial traffi  c features: 
• Positive (+ box) spatial traffi  c feature, which 

models the influence from the areas that 
share similar patterns with the considered 
area

• Negative (– box) spatial traffi  c feature, which 
models the infl uence from the areas sharing 
reversed patterns compared to the consid-
ered data

To get these features, the spatial selector first 
calculates “correlation” between the considered 
area’s traffic and the traffic from other areas, 
which is implemented as a feed-forward neural 
network. Then the traffic features with positive 
correlations are summed up as the positive spa-
tial traffic feature, while the traffic features with 
negative correlations are summed up to obtain 
the negative spatial traffic feature. In this way, 
with the help of the spatial correlation selector, 
the single-dimensional feature of the considered 

area’s traffic at every time step is extended into 
a three-dimensional feature, which embeds the 
spatial infl uence from other areas.

Discrete Embedding Module: The discrete 
embedding module is designed to model various 
discrete factors such as the PoI, the hour of day, 
and the day of the week, which play an important 
role in describing the unique property of an area 
with its traffi  c usage patterns. For convenience of 
computing, all these discrete factors are encoded 
in terms of one-hot vector. Especially, we use the 
frequency distribution of PoI categories to under-
stand the function of the area, which is an import-
ant indicator of the potential trend and volume 
of traffic. We design a sparse linear embedding 
layer for every factor and concatenate the outputs 
into one assembled vector. For the capability of 
modeling and limited range, we add tanh function 
as the fi nal nonlinear activation layer. With various 
discrete factors of the considered area as input, 
the embedding module outputs a fixed-length 
vector as its semantic representation.

seQuentIAl Module
Based on the sequential features obtained from 
the former extractor module, we design a pow-
erful sequential module to model the important 
temporal trend and the period of mobile traffic. 
Our model is an RNN-based model and employs 
three important properties in the applications of 
an RNN in sequential modeling. The architecture 
of our sequential module is presented in Fig. 3c. 
The first core component is the LSTM unit. Fur-
ther, we utilize two chaining LSTMs to implement 
the seq2seq module. Finally, we apply the atten-
tion mechanism to strengthen its capability to cap-
ture the long and complicated dependencies.

LSTM: The RNN is a widely used sequential 
modeling tool in many scenarios like neural lan-
guage processing and time series forecasting. Dif-
ferent from the general neural network, the RNN 
has a cycle connection and a memory cell to cal-
culate and store the past state, which is expected 
to record the knowledge of the sequence history. 

FIGURE 3. Main architecture of DeepTP including two components: features extractor and sequential model.
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While simple, the original RNN is not suitable for 
our bursty and long-period mobile cellular traffic 
forecasting because of its risk of gradient explod-
ing and vanishing problem for modeling long 
time series. Thus, we choose LSTM with delicate 
control gates as the basic unit of our sequential 
model. In general, LSTM consists of a memory 
cell and three information control gates. It first 
generates the “forget gate” and “input gate” from 
the combination of input and hidden state. With 
the forget gate telling the memory cell which to 
forget and the input gate telling the memory cell 
which to remember, the memory cell is updated. 
Similarly, LSTM generates the “output gate” to 
cooperate with the new memory cell to generate 
the new hidden state, which is also the output of 
it. With the help of “information gates,” LSTM is 
capable of stably capturing the long-range depen-
dency of real mobile cellular traffic.

Seq2seq: While widely used in time series fore-
casting, one LSTM is not enough for mobile cellu-
lar traffic forecasting because of the burstiness and 
complexity. Besides, one LSTM is not able to pre-
dict multiple steps in advance. Thus, following the 
popular model in language modeling, we further 
utilize seq2seq structure to enable the multi-step 
prediction and enhance the capability of handling 
complex bursty cellular traffic. Our seq2seq model 
consists of two submodules: encoder and decoder. 
Each submodule is an independent LSTM or other 
kind of recurrent unit like a general resource unit 
(GRU), a popular variation of LSTM. During train-
ing, the input cellular traffic sequence is fed into 
the encoder, and the final hidden state is regarded 
as the representation of the traffic sequence. Then 
this final hidden state is fed into the decoder as the 
initial seed to generate variable length prediction 
of cellular traffic. Compared to only one LSTM, 
which simply considers the final hidden state for 
the next hop traffic prediction, the seq2seq model 
not only forecasts multiple steps, but also enables 
longer and deeper relation extraction from bursty 
and long-period cellular traffic.

Attention: Now, we introduce the attention 
module to cooperate with the seq2seq module 
to further improve the performance of modeling 
bursty cellular traffic. Based on the previous sec-
tion, the seq2seq module extracts sequential fea-

tures from the input traffic sequence and outputs 
the final hidden state as its only representation. 
However, because of the limited capacity of the 
recurrent encoder and the long period of traffic 
sequence, the final hidden state will lose some 
information of the input. Meanwhile, due to the 
burstiness of cellular traffic, the adjacent traffic 
points with extreme values may confuse the neu-
ral network to make the wrong prediction. Thus, 
more information from the long period before 
the current step is needed to make stable and 
accurate decisions. From the view of the model, 
this means the sequential model needs to revisit 
all the intermediate hidden states of the encod-
er to discover more valuable and reliable infor-
mation. To implement this, our attention module 
first accepts all the intermediate hidden states of 
the encoder as the candidates. Then it calculates 
the “correlation” between the current state of the 
decoder and these candidates. Finally, with this 
normalized correlation as the weight, we obtain 
the weighted sum of these candidates as the most 
related and stable “summary” of the input traf-
fic sequence for the current decoder state. With 
this knowledge as additional input, the decoder 
is expected to generate more accurate and stable 
forecasting results.

In conclusion, our model consists of two 
specifically designed components for the cellu-
lar traffic forecasting task. The first one is a fea-
ture extractor to extract spatial-temporal features 
of mobile cellular traffic and related features of 
external information. The second one is a sequen-
tial module, which is expected to model the com-
plicated and reliable temporal transition from the 
bursty and long-period mobile cellular traffic. In 
the next section, we test the performance of our 
proposed model on traffic forecasting with large-
scale real mobile cellular traffic data.

evAluAtIon on  
lArge-scAle MobIle cellulAr trAffIc dAtA

dAtAset
The dataset used in our experiments is collect-
ed from a large-scale mobile cellular network 
in Shanghai, a major city in China. The dataset 
records the data traffic load of approximately 9600 
base stations every 10 minutes from August 1 to 
August 31, 2014. Each entry of the trace contains 
detailed mobile data usage of 1,000,000 users, 
including the anonymized IDs of devices, and start-
end times of data connection, base station loca-
tion, and the amount of third generation (3G) or 
LTE data used in each connection. The traffic logs 
1.96 billion tuples of the described information, 
containing 2.4 PB logs, 77 TB/day. and 8 GB/base 
station on average. This large-scale and fine-tempo-
ral-grained traffic data guarantees the credibility of 
our mobile cellular traffic modeling and forecast-
ing. Besides, we collect PoIs data of Shanghai from 
the Open API (application programming interface) 
of the Baidu map. Based on collected PoIs data, 
we decide the function of each base station like Xu 
et al. [13] did. The basic information of the datasets 
is presented in Table 1.

To evaluate the accuracy of our predictive 
model, we compared the proposed model with 
several of the most up-to-date methods: 

TABLE 1. Basic statistics of utilized datasets.

Dataset Location Time Group Items

Mobile cellular traffic
Shanghai Aug. 2014

9600 BSs 1,000,000+ users

Points of interest (PoIs) 21 casses 839,128 records

Function Utilized POI

Residence Residence, life services

Entertainment Food, hotel, gym, shopping, leisure.

Business Finance, office building, company, trading area.

Industry Factory, industrial estate, economic development zone.

Education School, campus.

Scenery spot Scenery spot.

Suburb Villages, towns
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• ARIMA: As the most widely used time series 
forecasting method, ARIMA was first applied 
to traffic load prediction by Shu et al. [4]. 
We use the python implementation from the 
statsmodels library.

• SVR: The regression version of SVM is also a 
representative classic method for time series 
prediction. We use the python implementa-
tion from the sklearn library.

• RNN (GRU): As introduced above, the RNN 
has been widely used in many time series 
forecasting problems including traffic predic-
tion [3, 5]. 

Our model works in an end-to-end manner with-
out requiring handcrafting features. We choose 
MSELoss as the loss function, while the Adaptive 
Moment Estimation (Adam) algorithm with default 
learning rate is utilized to optimize the model. 
Several widely used tricks, such as dropout, L2 
regularization, selu unit, gradient clipping, and 
learning rate schedule, are used to avoid the 
overfitting problem. While normalized root mean 
square error (NRMSE) is used as the basic metric 
for evaluation, we randomly choose 15 base sta-
tions for testing.

PredIctIon results
In this section, we first directly compare the pre-
diction results of our model with the actual traffic 
from two randomly selected base stations. Then 

we present the performance comparison between 
DeepTP and three baseline models in terms of 
NRMSE in Fig. 4.

As Fig. 4a shows, the prediction results of two 
classic methods ARIMA and SVR are more than 
0.08 in terms of NRMSE. Specifically, because of 
the bursty nature and nonlinear relations in our 
traffic data, SVR performs better than ARIMA. 
Compared to the classic methods, the RNN-based 
model reduces the average NRMSE of prediction 
to 0.06, which demonstrates the effectiveness of 
the RNN in modeling a complicated sequence. 
Furthermore, by considering the spatial depen-
dencies and introducing external information, our 
model is capable of modeling the actual cellular 
traffic and outperforms the general RNN (GRU) 
model by more than 12.31 percent in the real 
system. Further, we find that the forecasting per-
formance varies among different functional zones. 
For example, as Fig. 4b shows, compared to 
network traffic from the amusement district, the 
performance of our model and ARIMA in the res-
idential area is better. The high volatile nature of 

FIGURE 4. Performance comparison between DeepTP and baselines: a) overall forecasting performance on 
selected base stations; b) forecasting performance varies in different functional zones; c) independent 
performance on each selected base station.

(a) (b)

(c)

In this article, we propose Deep Traffic Predictor (DeepTP), a deep-learning-based model to forecast  
traffic demands from spatial-dependent and long-period cellular traffic. It works in an end-to-end  

manner without requiring any handcrafting features
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population and traffic demands in amusement can 
account for this to a great extent. Our model suc-
ceeds in modeling this high volatility and achieves 
better performance than ARIMA. Figure 4c pres-
ents the performance of our model and baselines 
on some randomly selected base stations. We 
can see from Fig. 4c that our model is almost bet-
ter than the RNN (GRU) baseline model in every 
base station.

In conclusion, by considering the influence of 
external information and spatial dependencies, 
our proposed model outperforms traditional 
methods like ARIMA more than 40 percent and 
simple RNN-based methods more than 12 per-
cent in real mobile cellular traffic data.

effects of hyPerPArAMeters
Based on the framework of DeepTP, we further 
explore the influence of various neural units and 
hyperparameter settings in the evaluation. Spe-
cifically, we try different recurrent units (e.g., 
GRU, LSTM, and general RNN) and various hid-
den layers in the evaluation, and the results are 
presented in Fig. 5. As Fig. 5 shows, the DeepTP 
model is not sensitive to the hyperparameter set-
tings, demonstrating the robustness of our model 
design. Besides, the results demonstrate that the 
shallow recurrent network is enough for time 
series forecasting, while stacking more layers is 
not helpful to extract representative features. In 
the experiments, the model with one-layer LSTM 
achieve the best results.

conclusIon
In this article, we investigate the problem of 
mobile cellular traffic forecasting in a large-scale 
real system. We propose a deep-learning-based 
end-to-end model DeepTP, which captures two 
natural characteristics of mobile cellular traf-
fic: a general feature extractor to model spatial 
dependencies and external information, and a 
seq2seq model with an attention mechanism as 
the sequential model to capture reliable tem-
poral information from bursty and long-period 
traffic data. Extensive experiments on large-scale 
mobile cellular traffic show that DeepTP outper-
forms all the baselines. Inspired by our work, we 
believe that utilizing multiple network traffic and 
jointly considering more practical factors to do 
multivariable forecasting is a promising direc-

tion. It can not only improve the performance 
of forecasting but also give us more chances to 
understand the variations of the network traffic 
demands.

Except for the promising performance of our 
model, we would like to discuss some limitation 
of our model and deep models. The largest weak-
ness of our model is the computing efficiency. 
Coupled with a modified attention module as our 
spatial correlation selector, which is known as a 
time-consuming component, our model can be 
much slower than the standard recurrent model 
and traditional methods. Furthermore, even the 
standard recurrent model itself is slower than tra-
ditional methods, because the recurrent model 
needs to keep the memory during training and 
inference, which prevents it from utilizing the 
paralleli power of GPU. To solve this problem, 
the highly parallel convolutional network can be 
regarded as a promising potential solution.

Except for the aforementioned paralleling 
direction, in the future, we plan to improve the 
efficiency of the feature extractor to enable the 
application of DeepTP in a real-time system. Con-
sidering the high correlations between the traffic 
demands and human activity [14, 15], we plan to 
introduce more user behavior [14] into our model 
and build a multi-task framework to predict traffic 
demands and human flow simultaneously. Multi-
task learning may be a good starting point for this.
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