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ABSTRACT
Achieving accurate, real-time, and spatially fine-grained pop-
ulation estimation for a metropolitan city is extremely valu-
able for a variety of applications. Previous solutions look
at data generated by human activities, such as night time
lights and phone calls, for population estimation. However,
these mechanisms cannot achieve both real-time and fine-
grained population estimation because the data sampling rate
is low and spatial granularity chosen is improper. We address
these two problems by leveraging a key insight — people fre-
quently use data plan on cellphones and leave mobility signa-
tures on cellular networks. Therefore, we are able to exploit
these cellular signatures for real-time population estimation.

Extracting population information from cellular data records
is not easy because the number of users recorded by a cellu-
lar tower is not equal to the population covered by the tower,
and mobile users’ behavior is spatially and temporally differ-
ent, where static estimating model does not work. We exploit
context-aware city segmentation and dynamic population es-
timation model to address these challenges. We show that the
population estimation error is reduced by 22.5% on a cellular
dataset that includes 1 million users.

ACM Classification Keywords
H.4.m Information Systems Application: Miscellaneous;
H.2.8 Database Management: Database Applications - data
mining

Author Keywords
Population estimation; urban computing; context aware
computing; mobile sensing; big data.

INTRODUCTION
Achieving real-time and spatially fine-grained population es-
timation in a metropolitan city is extremely valuable for a va-
riety of applications, including city planning, transportation
scheduling and disease control [1]. However, previous solu-
tions [2, 3, 4] cannot support accurate, real-time, and spatially
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Accuracy Real-time Spatial Granularity Cost

Population census [2] High × Low High

Remote sensing [3] High × High Low

Phone call records [4] Low X Low Low

Ours High X High Low

Table 1. Comparing the advantages and disadvantages of several mech-
anisms used in population estimation.
fine-grained population estimation at low cost. Achieving this
goal is hard because the first three requirements suggest that
we need to sample the population frequently. For example,
we can directly count people one by one. However, such so-
lution costs lots of money and time, and cannot be used in
practical systems. As an alternative, some previous works
look at data collected from people’s activities and try to build
a linkage between the data and the population [4, 5]. Table 1
summarizes the advantages and disadvantages of these works.
None of them can achieve accurate, real-time, and spatially
fine-grained population estimation at low cost. Let us discuss
each mechanism, which inspires our system and design.

Most of governments carry out regular census because it pro-
vides high accuracy even though at a cost of money and high
latency [2]. Bhaduri et al.[3] look at images collected by
satellites and use remote sensing to estimate population distri-
bution. This method does lower the cost and is able to provide
100m×100m spatial resolution. However, it cannot track the
dynamic variation of population distribution during the day
because it relies on the mapping between night time lights
and population. Thus, it still suffers high latency, since the
estimation results can only be produced during night time.
Pierre et al.[4] estimate the population by looking at phone
call records, and achieve real-time but inaccurate estimation.
Its inaccuracy comes from the sparsity between two neighbor-
ing phone calls where people may move to another location.
As a result, we cannot estimate the population in a particular
area accurately at the scale of minutes. Thus, we ask what
kind of data source should we use to build the linkage be-
tween the data and population?

We look at cellular data accessing records because of three
reasons. First, cellular data access happens more frequently,
usually at the scale of minutes. It naturally provides finer
time-domain granularity in sampling population, and as a re-
sult, has the potential to improve the estimation accuracy.
Second, cellular infrastructure is ubiquitously deployed, and
the distance between two neighboring cellular towers is only
200∼300m in urban area[6]. Therefore, we can leverage this
infrastructure to achieve spatially fine-grained population es-
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Figure 1. Illustration of the quality of our dataset.

timation. Third, cellular data accessing records are logged
passively. We do not need to deploy additional software or
hardware on user side. Therefore, we focus on cellular data
accessing records and investigate how we can estimate popu-
lation based on them.

Estimating real-time population distribution for metropolitan
via cellular data accessing records is not easy because of three
reasons. The first challenge is that the number of people ac-
cessing the cellular network is not simply equal to the popu-
lation covered by cellular towers. Many factors contribute to
this gap, including disconnected smartphones, people who do
not have smartphones, etc. Therefore, we need to model the
correlation between the cellular data accessing records and
population, and design an algorithm to bridge this gap. Sec-
ond, it is difficult to find a proper spatial resolution to enable
the analysis of physical context behind the estimated popu-
lation. For example, how many people stay in a residential
zone at a given time. Such information is extremely valu-
able to understand urban mobility patterns, which have the
potential to enable various applications, such as transporta-
tion scheduling. However, since cellular towers simply seg-
ment the city based on their coverage, it is hard to acquire the
physical context of population distribution. Third, the data
plan usage of mobile users is heterogeneous in spatial and
temporal domain. For example, people in residential area use
their data plan more frequently compared to people in indus-
trial area, and people use their data plan more frequently dur-
ing daytime compared to midnight. These complicated user
behaviors make it difficult to estimate the population with a
simple and static model. Therefore, in order to achieve accu-
rate and real-time population estimation, we need to design a
context-aware and dynamic model.

We address above three challenges by designing a novel sys-
tem. First, our system segments the city based on urban func-
tions regions, which are basic units with one specific function,
such as residential area and business district. The division is
done by leveraging the roads structure and marking the ur-
ban function of each segmented area with points of interest.

Instead of using fixed grids that will lose physical context,
we choose a segmentation that is able to provide the sweet
point of the physical context and spatial granularity tradeoff.
Second, our system combines a long-tailed power-law model
and an regression model to accurately estimate the popula-
tion. Third, we enable dynamic population estimation by
leveraging a mechanism that is able to model mobile users’
heterogeneous behavior in spatial and temporal domain.

Our empirical evaluation on a cellular dataset with 1 million
users shows that we are able to achieve real-time and accu-
rate population estimation. Our system reduces estimation er-
ror by 22.5% compared with a baseline method that does not
consider physical context. We show that such accurate popu-
lation estimation enables several new applications, including
understanding dynamic population migration and scheduling
subway transportation.

DATASETS
Now, we introduce the datasets we utilize to enable accurate
and real-time population estimation. In addition, we also pro-
vide basic visualization to demonstrate their merit.

Mobile Cellular Data Accessing Trace
The utilized dataset is an anonymized cellular data accessing
traces collected from the mobile network of Shanghai, one of
the major metropolitan in China. It passively records detailed
information of cellular data traffic consumed by mobile users,
including the ID of mobile devices (anonymized), ID of the
base stations, location of base stations, start-end time of data
connection and the volume of traffic consumed in each con-
nection. This dataset is large-scale in terms of tracking more
than 1,000,000 mobile users on over 9,000 base stations for
one month of August, 2014. It provides real-time location in-
formation of mobile users with high spatial and temporal res-
olution, which is ideal for context-aware and real-time popu-
lation estimation.

To explicitly demonstrate the benefits of utilizing this cellular
data, we present several basic visualizations about its charac-
teristics in Figure 1. Subplots (a) and (b) show the empirical
Cumulative Distribution Function (CDF) of interval time be-
tween two consecutive records and the empirical Probability
Density Function (PDF) of the number of records per users,
respectively. From the results, we can observe that more than
85% consecutive records happen in less than 600 seconds and
most of mobile users have more than 1,000 records in total.
In contrast, the average inter-event time of consecutive mo-
bile phone calls is 8.2 hours [1], which indicates that the cel-
lular data accessing records are much more fine grained than
the call detail records. These observations demonstrate that
our dataset has extensive records of mobile users, and have
fine temporal granularity to guarantee the credibility of real-
time population estimation. Figure 1(c) presents the correla-
tion coefficient between the number of mobile users and night
time population obtained from census during a day. From
the results, we can observe that they have a strong correla-
tion during the whole day, especially at around 7AM. This
is because most of people stay at home during the night and
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Dataset Resolution Real-time Usage Public Available

Cellular Base station
√

Estimation ×
Worldpop[5] 100m×100m × Ground truth

√

Census[11] Admin. area × Evaluation
√

Transport[12] GPS location
√

Evaluation ×
Table 2. The summary of datasets.

begin to become active in the morning. In addition, the max-
imum correlation reaches up to 0.75, which is much higher
than 0.45 reported in call detail records dataset[7]. It shows
that the mobile data accessing records we utilize capture pop-
ulation distribution much better than the call records dataset.
To further illustrate the benefit of our data, we apply an ex-
isting simple estimation model from [4] and cross validate
the results with the ground truth data of census. We utilize
the normalized RMSE, a widely adopted evaluation metrics
in population estimation[4, 5, 8], to evaluate the accuracy of
estimation, where smaller normalized RMSE means more ac-
curate estimation. In Figure 1(d), we compare our results
with the current state of the art projects that utilizing other
datasets, including Asiapop Project (AP)[8], Global Rural
Urban Mapping Project (GP)[9], Gridded Population of the
World (GPW)[10] and random forest approach (RF)[5]. We
can observe that, even though we utilize an existing intuitive
model, the estimation obtained from our data is significantly
more accurate than those reported in existing works of AP,
GP and GPW. These observations further demonstrate that
our dataset is ideal for accurate and real-time population dis-
tribution estimation.

Ground Truth and Evaluation Datasets
In order to build the population estimation model and evaluate
the system performance, we need accurate population data
to serve as ground truth and evaluation datasets. To achieve
this goal, we utilize data collected from Worldpop[5], census
and transport datasets, which are summarized in Table 2 and
introduced as follows.

Worldpop[5] provides night time population by exploiting the
data collected from multiple sources, including remote sens-
ing images, census and call detail records. With 100m×100m
spatial resolution, it achieves most accurate night time popu-
lation distribution. Thus, we utilize this dataset as the ground
truth to calibrate parameters of our system.

The census data[11] is open by Shanghai government, which
provides accurate night time population of 188 administra-
tion areas and 16 districts of Shanghai in 2014. District is
a more fine-grained administration division than the whole
city, while the administration area is the most fine-grained
administration division. This dataset is used to evaluate the
accuracy of our estimation.

The transportation dataset[12] contains detailed records of
taxi as well as subway for one month in Shanghai, which
records the time stamps and GPS coordinates of citizens
transporting via taxi and subway. This dataset is large-scale
in terms of tracking over 10 million taxi trips and 100 mil-
lion subway trips. Since human mobility is closely correlated
with the dynamic population distribution, the transportation

Spatial Granularity Resolution Accuracy Physical Context

Adminstration district Low High ×
100m×100m grid High Low ×

Ours High High
√

Table 3. Features of different spatial granularity.

dataset is utilized to validate the approach of real-time esti-
mation.

HOW CAN WE ESTIMATE POPULATION?
In order to estimate population from cellular records, we need
to answer the following three questions. First, which spatial
granularity should we use for population estimation? Second,
how to fuse the data collected from multiple sources? Third,
how to build a dynamic model to estimate population from
the cellular data accessing records?

Spatial Granularity for Population Estimation
When we estimate the population of a specific area, we need
to decide how large the targeted area is, which is referred as
spatial granularity. However, the spatial granularity of the
existing population estimation approaches has several short-
comings, which are summarized in Table 3. Adminstration
district is utilized by census[2] and call records approach[4].
Such resolution is too low for urban environment, because
each administration district covers a large area, which leads
to loosing physical context. On the contrary, a small grid
of 100m×100m is adopted by remote sensing approach to
segment the city, which is a super-high spatial resolution[5].
However, it also cannot preserve physical context, because
urban functional regions are often segmented into different
grids. In addition, due to the randomness of human behaviour,
such small regions cause high variance in population estima-
tion, which further reduces the estimation accuracy. There-
fore, we are motivated to design a spatial granularity that is
able to preserve physical context, and yield high resolution
and accurate population estimation.

To achieve this goal, we need to first develop a method to
segment the city into regions with proper size. Space Syn-
tax[13] is a powerful tool to extract the structure of urban
area. However, this method mainly focuses on streets, while
in our application the intersection regions are of greater inter-
est, because most of population distribute in the regions. On
the other hand, road network, including street, highway, etc.,
is a natural partition of a city[14, 15]. In addition, segmenta-
tion with different level of roads is a flexible approach with
fine-grained regions in downtown and coarse-grained regions
around suburb, which is closely related to the population dis-
tribution. Thus, we utilize the road network to segment the
city into different regions. In Shanghai, freeways and city
expressways plus the urban arterial roads form a natural seg-
mentation of the urban area as showing in Figure 2(a). Intu-
itively, we consider each segmented region as a basic small-
est unit that carries the context of urban functions by Points
of Interest (PoI), which are locations associated with specific
functions like residents or shopping malls, and often fall in-
side these regions where people perform socioeconomic ac-
tivities, i.e., staying home and going to work.
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Figure 2. The illustration of city segmentation and functional region identification.

ID Function Utilized PoI

#1 Residence residence, life services.

#2 Entertainment food, hotel, gym, shopping, leisure.

#3 Business finance, office building, company, trading area.

#4 Industry factory, industrial estate, economic development zone.

#5 Education school, campus.

#6 Scenery spot scenery spot.

#7 Suburb villages, towns.

Table 4. The utilized PoI categories and taxonomies.

In our system, we utilize an raster-based model to represent
the road network and utilize morphological image processing
techniques to deal with the problem of city segmentation[15].
In contrast to the vector-based model using geometric prim-
itives such as points, lines and polygons to represent spatial
objects, which requires intensive computation when perform-
ing topological analysis, the raster-based model based on a
binary image, e.g., ’0’ stands for road segments and ’1’ stands
for blank space, is more computational efficient and brief for
road topology analysis. In order to remove the unnecessary
details and noise information in the road network for segmen-
tation, such as cuted roads, lanes of a road and overpasses as
showing in Figure 2(b-1), we first perform a dilation oper-
ation to eliminate all the cuted roads, and then thicken the
roads to fill the small holes and smooth out unnecessary de-
tails. Finally, we obtain the skeleton of the road networks
by performing a thinning operation[16] to recover the size of
a region while keeping the connectivity between regions as
showing in Figure 2(b-2). The last step is to perform a con-
nected component identification that finds the smallest unit of
regions by clustering ’1’-labeled consecutive grids.

After segmenting the city into proper regions, we need to
identify the physical context, i.e., urban function, of each re-
gions. Cranshaw[17] proposed an approach to discover urban
functional regions based on the check-in data in FourSquare.
However, the penetration rate of FourSquare is very low in
Shanghai, which indicates that the check-in data is insuffi-
cient to support accurate identification. On the contrary, the
PoIs data can reflect function of a region and usually can be
open accessed through the APIs of map service providers,
which makes it easier to be generalized to other cities. Thus,
we crawl 0.75 million PoIs of Shanghai city from BaiduMap,
and calculate the distribution of PoIs in each region unit.
To measure the importance of a PoI in one region properly,
we utilize a numerical statistic named term frequency inverse
document frequency (TF-IDF)[18], which is designed to re-

Region\POI Resid. Enter. Busi. Indus. Edu. Scen. Sub.

Residence 0.76 0.29 0.46 0.01 0.05 0.02 0.01

Entertaiment 0.29 0.66 0.38 0.07 0.05 0.04 0.12

Business 0.21 0.24 0.73 0.14 0.04 0.02 0.17

Industry 0.09 0.14 0.40 0.66 0.03 0.02 0.29

Education 0.14 0.22 0.22 0.08 0.72 0.03 0.17

Scenery spot 0.13 0.22 0.19 0.03 0.02 0.77 0.11

Suburb 0.06 0.08 0.17 0.10 0.02 0.02 0.86

Table 5. The mean value of TF-IDF vectors for every functional type.

flect how important a word is to a document. In our system,
it is used to measure the importance of a specific type PoI to
its located region. Specifically, for a given region unit r ∈ R,
where R is the set of all region unit, the number of PoIs in
each PoI category can be counted, and we further calculate a
PoI vector, [TF-IDFr

1,TF-IDFr
2, ...,TF-IDFr

F ], where F is the
number of PoI categories, and TF-IDFr

i is the TF-IDF value
of i-th PoI category in region r, which can be calculated as
the following:{

IDFr
i = log(R

/
||{r|the ith PoI category ∈ r}||),

TF-IDFr
i = nr

i · IDFr
i
/

Nr,
(1)

where nr
i is the number of PoIs belongs to the i-th category in

region r and Nr is the total number of PoIs in region r.

Then, we divide them into seven categories according to [19,
15], i.e., residence, entertainment, business, industry, educa-
tion, scenery spot and suburb, shown in Table 4. These PoIs
cover all the major region types that people commute between
every day to engage in different socioeconomic activities,
e.g., working, shopping, and entertaining. After calculating
the TF-IDFr

i of all regions, we apply a K-means clustering al-
gorithm on the TF-IDF vectors to cluster all the region units
into seven urban functions, which are shown in Figure 2(b-
3). To achieve the proper spatial resolution, we aggregate
the neighboring region units with the same type urban func-
tion into a larger region, which is shown in Figure 2(b-4). To
avoid too many regions are aggregated and loss spatial granu-
larity, we use the highways to limit the aggregation, i.e., only
aggregate the regions within the zone separated by the high-
ways. Finally, we mark the regions of different urban func-
tion with different colors in Figure 2(c). To evaluate the ef-
fectiveness of our system, we calculate the mean value of TF-
IDF across identified urban functional regions and present in
Table 5, which shows that all seven clusters are well distin-
guished with all the diagonal elements as the highest value in
the corresponding row and column. We denote the identified
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(a) Mapping of mobile users (b) Mapping of Worldpop

Figure 3. Schematic illustration of multi-source data fusion.
urban functional regions as {u1,u2, ...,uU}, where U is the
number of all regions.
Multi-source Data Fusion
Since our datasets are collected from multi-sources, it is non-
trivial to conduct data fusion. To achieve real-time popula-
tion estimation, we first extract the number of mobile users
in each base station at each time slot. Given M base stations
(l1, l2, ..., lM) and T time slots (1,2, ...,T ), we define the num-
ber of mobile users at base station li at time slot t as ρ t

li
. Mo-

bile cellular networks are composed of cells, i.e., geographic
zones around a base station. Each cellular connection and
data communication can be located by identifying the geo-
graphic coordinates of the associated cell. In order to obtain
real-time population in the scale of urban functional regions,
we need to map the number of cellular users to the scale of re-
gions. According to the locations of all base stations, we first
utilize Voronoi diagram to partition the city and obtain their
coverage area. Specifically, the Voronoi diagram partitions
the areas for each BS as {b(l1),b(l2), ...,b(lM)}, where any
location pi ∈ b(li) satisfies that for any point l j , li, the Eu-
clidean distance between pi and li is smaller than that between
pi and l j. Through this way, we build the Voronoi polygons
based on the spatial location of base station. In Figure 3(a),
we use the towers to mark the locations of base stations and
the black lines to represent the borders of each base station’s
coverage. Then, we map the number of cellular users, ρ t

li
for

base station li at time slot t, into the identified urban func-
tional region, which is the region marked with red color in
Figure 3(a). Due to these two different city segment meth-
ods, their boundaries of the same area should have intersec-
tions and overlaps. Thus, we derive the recorded mobile users
of each functional region based on the proportion of Voronoi
polygons intersecting that region. In Figure 3(a), the mobile
users of functional region uA is derived by aggregating the
mobile users of base stations lA, lB and lC based on the pro-
portion of intersecting area. Specifically, mobile users for
urban functional regions ui at time slot t, denoted by ρ t

ui
, is

obtained by the following expressions,

ρ
t
ui
= ∑

l j

ρ
t
l j

A(b(l j)∩ui)

A(b(l j))
, (2)

where A(b(l j)) is the area size of base station l j’s cover-
age, and A(b(l j)∩ui) is the intersection area of b(l j) and
functional region ui. Then, we denote the number of users
recorded in U urban functional regions at time slot t as the
vector of ρ t

u = [ρ t
u1
,ρ t

u2
, ...,ρ t

uU
].

To fusion the ground truth of Worldpop dataset, we utilize
a similar approach to deal with the mobile network data.

(a) Correlation between number
of mobile users and population

Urban Functional Regions

Resi.  Ente. Educ. Scen. Busi. Indu.  Subu.
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e
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e
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e
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(b) Mobile network access rate
in different functional regions

Figure 4. Characteristics of user behaviour in general and in different
functional regions, respectively.

Specifically, we estimate the night time population of each ur-
ban functional regions ui, denoted as θui , by aggregating the
population of the 100m grid squares in the WordProp dataset
based on the intersecting area. In Figure 3(b), the population
of functional region uA is derived by aggregating the popula-
tion of the intersecting squares based on the proportion of in-
tersecting area. More specifically, the expression is presented
as follows,

θui = ∑
j

ρg j

A(g j∩ui)

100×100
, (3)

where A(g j∩ui) is the intersection area of 100m grid square
g j with functional region ui. Through this way, we ob-
tain the training dataset of each functional regions, i.e.,
[θu1 ,θu2 , ...,θuU ], and are ready to carry out real-time popu-
lation estimation.

Real-time Population Estimation
In order to estimate real-time population, we first utilize the
obtained mobile data accessing recorded users and ground
truth for training a static model to estimate the night time
population, and then adjust the trained model to estimate real-
time population. Since the recorded number of mobile users
has highest correlation with night time population at 7AM as
shown before, we compare the recorded number of users at
the time slot of 7AM ρ t

ui
(t = 7) with the ground truth pop-

ulation θui in Figure 4(a). We can observe that the log-scale
mobile users are linearly correlated with the log-scale popula-
tion, which indicates that a power-law distribution is suitable
to model the relationship between the number of mobile users
and population. We denote the estimated population of each
functional region as θ̂u = [θ̂u1 , θ̂u2 , ..., θ̂uU ] and propose an es-
timation model as follows:

θ̂u = α(ρ t
u)

β , (4)

In this model, parameter α represents the scale ratio and β

denotes the superlinear effect of population θu on the number
of mobile users ρ t

u. In order to estimate these two parame-
ters, we transform (4) to log θ̂u = logα +β logρ t

u. Since Fig-
ure 4(a) shows that the linear correlation between log-scale
population and log-scale number of mobile users is strong,
a standard linear regression model is sufficient to accurately
learn parameters α and β . Therefore, we fit the parameters
by applying a linear regression on the training data.

Since mobile users’ behaviour is correlated with urban func-
tional regions, the static parameters α and β cannot estimate
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Figure 5. Performance evaluation via correlation, RMSE and PDF.

the population across different functional regions accurately.
To demonstrate such spatial heterogeneity of behaviour, Fig-
ure 4(b) shows that mobile network accessing rate per user
differs significantly across different urban functional regions.
Specifically, the users in resident area access mobile data net-
work twice more frequently than those in industry area. This
motivates us to design a context-aware and time variant model
to characterize the spatial and temporal heterogeneity of mo-
bile users’ behaviour. To achieve this, we train the data ac-
cording to different types of regions, and obtain the param-
eters as (α1,β1),(α2,β2), ...,(α7,β7) for the seven identified
types of functional regions.

Utilizing the above parameters with region types, we can es-
timate accurate population of any functional regions by the
number of mobile users, i.e., denoted by ρ t

u j
i

with region type

j at time t = 7, by the following static model,

θ̂
t=7
u j

i
= α j

(
ρ

t=7
u j

i

)β j

. (5)

Now, we expand our estimation model into a dynamic model
to estimate real-time population during one day. To achieve
this goal, we need to handle the heterogeneity of mobile
users’ behaviour in temporal domain. We address this prob-
lem by utilizing the factor that β captures the superlinear ef-
fect between recorded mobile user number and population,
which is a characteristic of different urban functional regions,
while α captures the intensity of human activity that varies
along with the time. Furthermore, we exploit the fact that the
population of Shanghai city does not vary significantly during
the day. Therefore, we expand the model into a dynamic one
by scaling parameter α while with β fixed. We denote the
scaling factor of α as Rt , then the dynamic α t

j can be com-
puted by,

Rt = ∑
i

θui

/
∑α j

(
ρ

t
u j

i

)β j

, α
t
j = α j×Rt . (6)

Finally, we derive the following dynamic population estimat-
ing model as follows,

θ̂
t
u j

i
= α

t
j

(
ρ

t
u j

i

)β j

, t = 1,2, ...,T. (7)

EVALUATION
Now, we evaluate the performance of our population estima-
tion system from two perspectives: quantifying the accuracy
of our population estimation and evaluating real-time estima-
tion with transport dataset.

(a) Baseline (b) Our approach

Figure 6. Visualization of the estimated population.

Cross Validation
We first evaluate our population estimation by adopting cor-
relation coefficient and normalized root mean square error
(RMSE) as the metrics, which are widely used in measur-
ing the accuracy of population estimation[4, 5, 8]. We denote
the pearson correlation coefficient and normalized RMSE as
C and ε , respectively, which are defined as,

ε =

√
1
U ∑

U
i=1

(
θ̂ t

ui
−θui

)2

1
U ∑

U
i=1 θui

,

C =
∑

U
i=1

(
θ̂ t

ui
− 1

U ∑
U
i=1 θ̂ t

ui

)
(θui−

1
U ∑

U
i=1 θui)√

∑
U
i=1

(
θ̂ t

ui
− 1

U ∑
U
i=1 θ̂ t

ui

)2√
∑

U
i=1(θui−

1
U ∑

U
i=1 θui)

2
.

(8)

The higher C or lower ε indicates more accurate estimation.
Since one of our main contributions is taking the urban func-
tional regions into consideration, we define the basic power-
law model that does not exploit physical context as the base-
line. To evaluate the performance gain of our system, we
show the accuracy comparison with the baseline in Figure 5.
From the results, we find that our estimation model signifi-
cantly reduce ε by 22.5% and enhances C by 12.5% on av-
erage comparing with the baseline, which indicates that our
system produces much more accurate estimation. On the
other hand, in Figure 5(b) we present the empirical PDF of
the estimated population distribution with the ground truth.
Obviously, the PDF of our approach deviates less from the
originate data than the baseline, which reveals the underlying
reasons why our system achieves more accurate estimation
results. However, we still have little knowledge about how do
the population and physical context impact the accuracy of
population estimation. Therefore, further evaluations should
be provided with the population and physical context consid-
ered.

To investigate the relationship between estimation error and
population, we show the distribution of estimated popula-
tion and original population as a heatmap in Figure 6, where
the red color means more functional regions and blue color
means less. From the results, we can observe that the baseline
approach tends to estimate less people than the ground truth
when the original population is high, and estimate more when
the original population is low. On the contrary, the estimated
population in our approach always distributed evenly around
the ground truth, which explains why our approach produces
more accurate estimation in another view. To quantify how
the estimation error varies with the population, we classify
all the regions into four groups based on their population and
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Figure 7. Estimation error varies with population.

show ε of different groups in Figure 7. From the results, we
can observe that our system performs a bit worse than the
baseline when the population is between 10 and 100, while
the performance is similar when the population is between 1
and 10. These differences are mainly influenced by the ran-
domness of human behaviour, which plays an important role
when the population is low. On the contrary, the performance
of our system is much better than baseline when population
is high. Especially when the population is between 1,000 and
10,000, our system reduces ε by 44.7%. Since the regions
with high population are more important in estimation, our
system performs better in general.

To further evaluate the performance of our system across
different urban functional regions, we present normalized
RMSE(ε) and correlation(C) of seven different urban func-
tional regions in Figure 8. From the results, we can observe
that our system estimates population more accurately than
the baseline in every urban functional region. More specif-
ically, in school, park and business areas our system obtains
largest performance boost, where the reduce of ε ranges from
31.7% to 53.2% and the improvement of correlation is more
than 11.8%. It suggests that in these three regions mobile
users’ behaviour in cellular network differs significantly than
in other regions. Therefore, without considering the urban
functional regions, the baseline performs much worse than
our system in these areas.

Finally, we evaluate the system’s performance trade-off with
spatial and temporal granularity. We aggregate the cellular
accessing data into different size of time slot, which are 10
minutes, 1 hour, 6 hour and 1 day respectively. Then, we
evaluate the night time estimations by cross validating with
the ground truth provided by WorldPop and show the results
in Figure 9(a). From the result, we find out that the system
accuracy improves as the time slot increases, which however
decreases the temporal granularity. When time slot increases
from 10 minutes to one hour, the correlation is increased by
9.6% and normalized RMSE is decreased by 10.0%. How-
ever, when the time slot increases to 6 hours, the accuracy
does not improve much and the performance of our system
become stable. By utilizing the census data, we can obtain
accurate population in administration area and district scales.
Therefore, we can utilize the census data to evaluate the ac-
curacy of our system at different spatial granularity, which is
presented in Figure 9(b). From these results, we find out that
as the spatial granularity decreases, system’s performance
significantly improves. At the district level, ε is close to 0 and
C is close to 1, which means that the estimated population is

(a) Correlation (b) NRMSE

Figure 8. Accuracy evaluation at different urban functional regions.
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Figure 9. Accuracy evaluation at different granularity.

almost identical with the original population. The underlying
reason is that when the predicted regions cover more mobile
users, the randomness of human behaviour will have less im-
pacts, which on the other hand shows the scalability of our
approach.

We evaluated the performance of our system with the base-
line, and the results reveal that our system significantly im-
proves the accuracy of real-time population estimation by re-
ducing ε by 22.5% and improves correlation by 12.5% in gen-
eral. More specifically, the accuracy of our system is related
with the population and urban functional regions, and the
most significant performance gain is achieved in large popu-
lation area and education regions. Furthermore, the accuracy
is highly correlated with the spatial and temporal granularity.

Cross Validation with Transport Data
Because of lacking direct ground-truth of real-time popula-
tion distribution, we utilize the transport data to evaluate the
real-time estimation of our system. Transport data records
human daily urban transfer and mobility, which directly ac-
counts for the variation of population distribution. Thus, there
is a strong relevance between the transport data and real-time
population distribution. In other words, if we can obtain an
reliable and strong correlation between the transport data and
estimated population, the accuracy of our system can be en-
sured.

Particularly, we use the taxi data that covers most of regions
to serve as evaluation dataset. For region ui in time slot t, we
have two vectors: [ρ t

u1
,ρ t

u2
, ...,ρ t

uU
] (the population of each

functional region) and [γ t
u1
,γ t

u2
, ...,γ t

uU
] (the transport active

level of each functional region, which is derived as the sum
of the number of the arriving taxies and the departing tax-
ies). To evaluate the accuracy of our system, we calculate the
correlation coefficients between these two vectors, and show
them in Figure 10. From the results, we can observe correla-
tions under different conditions of functional regions, spatial
scale and time scale. The spatial scale is defined as the radius
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Figure 10. The results of cross validation with taxi data for real-time estimation evaluation.
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Figure 11. Observations of taxi density distribution that influences the correlation evaluation.
of the investigated area, which is centered by central busi-
ness district (CBD). In terms of region function, as showing
in Figure 10(a) we find that in function types of residence and
entertainment, the correlation reaches up to 0.75, while other
function types show low correlation. For example, the cor-
relation in industry area can be as low as 0.3. Inspired by
such significant correlation difference, we examine the cor-
relation variation from the downtown to suburb, which is de-
creasing from 0.7 to 0.55 as Figure 10(b) shows. In addition,
time is also a critical factor that influences the correlation. As
Figure 10(c) shows, in the evening the correlation maintains
at high level, while it reaches to the lowest point near 0.3
before the dawn. Besides, the validation results on the week-
end(the green line) and in the weekday(the red line) are also
different. In conclusion, high correlation between the taxi
user and population estimation is observed for most of time.
However, under some conditions such as before the dawn and
in the suburbs, we obtain relatively lower correlation. A nat-
ural question to ask is what is the underlying reasons for this
phenomena?

We investigate the underlying reasons in Figure 11. As
Figure 11(a) shows, the correlation increases as the taxi
density increases. Further, Figure 11(b) and (c) reveal
how the spatial scale and time influence the taxi density,
which surprisingly show similar changing trend displayed in
Figure 10(b) and (c). Observing these results, we find that
the underlying reason of obtaining low correlation is the low
taxi density, because the taxi active level cannot reflect the
population accurately when its density is low. In conclusion,
we cannot obtain precise cross validation when taxi density is
too low. However, if we cross validate the estimation results
with transport data in the proper time (i.e., evening) and spa-
tial scale (i.e., downtown) that guarantee enough taxi density,
the correlation between transport data and our population es-

timation reaches over 0.7, which strongly demonstrates the
accuracy of our real-time estimation.

OBSERVATIONS AND APPLICATIONS
In this section, we turn to discuss interesting observations and
applications enabled by our real-time and fine-grained popu-
lation estimation. We demonstrate that the dynamic popula-
tion distribution with spatial granularity of functional regions
and temporal granularity of one hour is sufficient to support
the observation of morning-evening rush, monitoring popula-
tion migration, and recommending locations of new subway
stations.

Morning-Evening Rush Visualization
With the fine-grained population estimation, we can obtain
population of any functional regions at the temporal granu-
larity of one hour, which enables the observation of urban
dynamics, i.e., population migration during the morning and
evening rush. We use relative difference as the indicator
calculated as rui = (ρ t+1

ui
− ρ t

ui
)/ρ t

ui
. We calculate the rela-

tive difference of every region in the period of morning rush
(7:00-9:00) and evening rush (17:00-19:00), and quantize it
to eight levels coded with different colors, which is shown in
Figure 12 with (a-b) visualizing downtown perspective and
(c) visualizing overall perspective. Hourly changes are evi-
dent in Figure 12(a-b): downtown shows significant increase
in the morning while the residence around downtown shows
large decrease. Typically, we observe landmarks in Shang-
hai like Lujiazui and People’s Square appearing as the center
of population aggregation. Figure 12(c) shows the temporal
patterns during the evening rush where residence in the down-
town and satellite cities are characterized by a large popula-
tion increase, while the entertainment and office area undergo
significant decrease. From Figure 12(c), we can observe that
most of population live in the residence around the down-
town, comparing with less population living in the satellite
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(a) Morning rush of downtown (b) Evening rush of downtown (c) Evening rush of the city
Figure 12. Population variation in the downtown during the morning and evening rush time.
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Figure 13. Population migration patterns.
cities, which shows that the downtown residence has a great
capacity of hosting population. Obviously, the population mi-
gration is directly corresponding to the location and function,
which gives us insights to estimate the population from the
perspective of regional context. With the context-aware esti-
mation, we are able to map the population with clear physical
meaning, which is one of the major advantages of our work.

Dynamic Population Migration
Context-aware real-time population estimation enables us to
investigate dynamic population migration in the metropolis.
Figure 13 shows the migration patterns of one day and one
week. Specifically, we set three threshold as 10%, 30% and
50% to calculate the proportion of the regions with abso-
lute value of r, denoted by ||r||, exceeding the threshold per
hour, and present the results in Figure 13(a). The curves
with different threshold show similar population migration
pattern that has three peaks corresponding to the morning
and evening commute hours. The first sharper peak at 8:00
belongs to the morning commuting hours that lasts 3 hours.
The remaining two lower peaks at 18:00 and 24:00 belong to
evening commuting hours that lasts longer to about 6 hours.
Thus, we find the morning commuting has shorter duration,
which is only half of the commuting hours in the evening. Be-
sides, the volume of morning commuting peak is much higher
than the two peaks of evening, which tells us that in metropo-
lis population migration during morning is much more inten-
sity than in the evening. These investigations demonstrate
that real-time population estimation enables the potential of
obtaining city microcosmic structure and instantaneous dy-
namics.

Figure 13(b) shows us the daily and weekly population vari-
ation from the perspective of functional regions, where we
compare the normalized population variations of entertain-
ment, business and residence regions to show the migration
routine of working population. As the weekday shows, the
population of residence decreases quickly from 7:00 while
the population of business increases fall behind it with 0.5
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Figure 14. Population variance at different distance from subway.

hour with similar duration. In addition, when the population
of business decreases from 16:00, the population of residence
and entertainment increases. The population of entertainment
decreases quickly after the peak at 20:00 while the population
of residence increases continually. In the weekend, the pop-
ulation of business remains stable at low level while more
people stay at home or in leisure regions. These depict us the
typical routine of working population at both day and week
level. Enabled by real-time estimation, we are able to monitor
the population variation in typical regions and their interac-
tions, which is helpful for a variety of applications like public
safety and emergency treatment.

Subway System Evaluation
We now demonstrate one application enabled by context-
aware population estimation — subway system evaluation.
In the past, government plans subway system by conduct-
ing market survey to obtain population migration patterns. It
is usually based on static migration models. With the help
of real-time population estimation, we are able to investigate
dynamic model to evaluate the location of subway station.
Figure 14 shows our evaluation results for the city subway
system with the real-time estimated population, i.e., we in-
vestigate the relationship between the population density vari-
ance with the distance to the nearest subway station. The de-
creasing tendency of population density variance is obviously
observed when the distance increases, which indicates that
most existing stations are built reasonably to play an impor-
tant role in servicing the population migration for nearby re-
gions. Further, we are able to find better subway station loca-
tions based on the dynamic population distribution. In terms
of morning rush and evening rush, Figure 15 shows several
examples of subway station locations, where the blue circles
represent the existing subway stations and red circles repre-
sent the recommending new subway stations. Most of regions
with rapid population changes have existing subway stations.
However, regions located by the red circle show rapid popu-
lation change but without any subway station, which are po-
tential locations of new subway stations. Comparing with the
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(a) Morning view (b) Evening view
Figure 15. New subway station location recommendation.

statistic data, real-time population gives us a comprehensive
and timely understanding of commuting demand. Places with
higher population migration rate, which are more suitable for
building station than those just with higher static population
density, can be located accurately by our system. All of these
helps in the planning and scheduling of transportation system.
Other Potential Applications
In this subsection, we discuss two more applications enabled
by our system — anomaly detection and tourist’s movement
analysis.
Anomaly detection: Rapidly detecting the unnormal gath-
erings, such as parades and sports events, is of great im-
portance for public safety in the management of modern
metropolis. With the help of accurate and real-time popu-
lation estimation provided by our system, we are able to de-
velop a method to rapidly detect such anomaly events. The
basic idea is that we first extract the patterns of population
variation in each region, and then compare real-time esti-
mated population with the expectation value of the patterns.
When the deviation is larger than a predefined threshold, an
anomaly event may happen. In addition, matching the de-
tected anomaly events with the real-world traces can also help
us evaluate the accuracy of dynamic population estimation.
Tourist’s movement analysis: Tourism is an important
business in modern metropolis. Understanding how the
tourists move and distribute across the city can significantly
benefit the tourist business locating and promoting. Our sys-
tem is ideal for investigating the movement of tourists, be-
cause it can not only passively monitor the location of mobile
users but also easily identify the tourists by looking at the
duration of their records. Therefore, based on our proposed
system, we are able to estimate real-time tourists distribution
that can be exploited to investigate the tourist’s movement.
RELATED WORK
In this section, we summarize relevant works from two per-
spectives — population mapping and mobile network data.

Population Mapping: Knowing where people are is a crit-
ical social and technical problem. A growing interest in the
global mapping of human populations emerged from 1990s
[20, 21]. Many researchers use simple area weighting meth-
ods [22, 23] or dasymetric modeling approaches [8, 24, 25]
to redistribute census population within administrative units.
The state of the art of traditional method is the project Word-
Prop, which leverages the remote sensing techniques for in-
ferring the population, but it cannot achieve real-time estima-
tion [5]. With the rapid development of global mobile com-

munication system, many advanced work in this field by us-
ing other sources data appear. For example, Deville et al. [4]
develop a mechanism that is able to estimate the population
density at national scale with mobile phone call records. Ric-
ciato et al. [26] design a method to fuse the mobile phone call
records from different operators and estimate the population
density at pan-European level. However, these approaches
suffers from low sampling rate and consequently loss accu-
racy. In this paper, we estimate real-time population in urban
environment via cellular data accessing logs with high sam-
pling with the aim of capturing the urban dynamics.

Mobile Network Data: The proliferation of mobile phones
and networks offers an unprecedented observations and so-
lutions for studying sociospatial behaviors. Mobile network
data enables many emerging research fields like human mo-
bility[1, 27, 28, 29], social network[30, 31] and urban plan-
ning[32, 33]. In terms of human mobility, Gonzalez et al. [1]
and Song et al. [27, 34] find that human trajectories show a
high degree of temporal and spatial regularity. From the in-
dividual aspect, Isaacman et al. [28] and Bayir et al. [29]
develop methods to find important places from the individual
trajectory. Combing the cell phone data and online location-
based social network data, Cho et al. [31] find that social re-
lationships can accounts for about 20% of human movement.
Besides, many researchers investigate the collective response
of population to emergency [35, 36]. In addition, Isaacman
et al. [37] model how large populations move within differ-
ent metropolitan areas, Fan et al. [38] predict the collective
movement in rare crowd events, and Shimosaka et al. [39]
utilize a bilinear poisson regression model to predict mobility
flow in the city.

Summary: Different from previous approaches, we study
fine-grained real-time population estimation by cellular data
accessing logs with short interval and more records in the ur-
ban scale, by mapping population with the help of region’s
context. To the best of our knowledge, these data have not
been assessed in their capability of mapping human popula-
tion at fine spatial and temporal scale, which enables the pos-
sibility of context-aware real-time population estimation and
guarantees the confidence of our investigation.

CONCLUSION
In this paper, we design, to the best of our knowledge, the first
system to estimate context-aware and real-time population
distribution via a large-scale mobile data accessing records.
Extensive evaluations and analysis reveal that our system re-
duces the estimation error by 22.5% and show several impor-
tant observations of urban mobility as well as one application
enabled by our system. We believe that our study provides a
new angle to achieve real-time and accurate population esti-
mation for metropolis, and paves the way for extensive urban
computing applications.
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