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ABSTRACT
Map matching is important in many trajectory based applications
like route optimization and traffic schedule, etc. As the widely used
methods, Hidden Markov Model and its variants are well studied
to provide accurate and efficient map matching service. However,
HMM based methods fail to utilize the value of enormous trajectory
big data, which are useful for the map matching task. Furthermore,
with many following-up works, they are still easily influenced by
the noisy records, which are very common in the real system. To
solve these problems, we revisit the map matching task from the
data perspective, and propose to utilize the great power of data to
help solve these problems. We build a deep learning based model
to utilize all the trajectory data for joint training and knowledge
sharing. With the help of embedding techniques and sequence
learning model with attention enhancement, our system does the
map matching in the latent space, which is tolerant to the noise
in the physical space. Extensive experiments demonstrate that our
model outperforms the widely used HMMbasedmethodsmore than
10% (absolute accuracy) and works robustly in the noisy settings in
the meantime.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Datamin-
ing; •Human-centered computing→Ubiquitous andmobile
computing systems and tools; Ubiquitous and mobile computing
design and evaluation methods.
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1 INTRODUCTION
As a fundamental component in map service, map matching is
to align the collected discrete user trajectory records to the road
segments. It is of great importance in many trajectory based appli-
cations of route optimization, traffic scheduling, etc.

The past years have witnessed the great efforts of the research
community in improving the accuracy, efficiency, and practicability
of the map matching system. Popular methods include geometrical
analysis [1], Kalman Filter [7], Hidden Markov Model (HMM) [6],
etc. Due to its applicability in sequential modeling and road network
connectivity, HMM becomes the widely used benchmark method
and lots of variants [2, 3, 5] have been adapted to fit different set-
tings and applications. HMM regards the individual road segments
as the states of the HMM and the recorded vehicle location mea-
surement as the state measurement. After observing the locations
sequence, HMM uses viterbi algorithm to find the best matching
road segments. However, HMM methods have the following two
shortcomings,
• Failing to utilize the potential of historical trajectory.HMM
matches each trajectory individually without using the informa-
tion of other trajectories. There are at least two kinds of valu-
able information which are omitted: 1) the historical trajectory
records of the same vehicle; 2) the historical trajectory from other
vehicles going through the identical or similar road network.

• Sensitive to the noisy records in the trajectory. Due to the
limitation of the positioning technique and the complicated and
changeable environment, the raw trajectories usually contain
considerable positioning noise and sparsity issue. As a distance
based method, HMM [6] is easily affected by the noisy records in
the physical world. Moreover, due to the complexity and random-
ness of the noisy records, the advanced methods [2, 4, 6] for map
matching is still sensitive to the noisy records in the trajectory.

In summary, HMM methods are model based methods, which are
failing to utilize the value of enormous trajectory big data and easily
influenced by the noisy records in the trajectory.

In this paper, we revisit the map matching task from the data per-
spective, and propose to utilize the great power of data to help solve
the aforementioned problems that obstruct the conventional meth-
ods. With the popularity of position devices, enormous trajectory
data are continuously generated and collected. These trajectory
data records the mobility of different vehicles, which reveal the
mobility pattern of vehicles and the noise distribution of position-
ing techniques. With mining such knowledge from these trajectory
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data, we are able to complete the map matching task in an intel-
ligent way, which surpasses the simple matching only from the
nearby road candidates. We propose to utilize the power of deep
learning to design a data-driven model for map matching.

First, to reduce the harmful effects of noisy records in physical
space, we introduce the embedding techniques to represent the
location and road segment, which are projected into a high dimen-
sional latent space with basic relation reserved. In this way, the
following matching process is done in the latent space which is
more tolerant to the noise from the physical space. Second, we
design an attention enhancement sequence to sequence model to
learn the mapping function from the trajectory sequence to the
road segment sequence from the enormous trajectory data. All the
available trajectory data are used to jointly train a unified model
with pattern sharing, which enable to utilize the information from
other trajectories to help the individual trajectory map matching.
Finally, we propose an effective trajectory data augmentation tech-
nique to enrich the trajectory data from a different perspective. The
augmentation strategy accelerates the training procedure of the
proposed model and obtain better performance in the real data.

2 PROBLEM DEFINITION
A trajectory is a series of spatial points in the order of time. There
are two different kinds of trajectories: GPS-based trajectory and
segment-based trajectory. The spatial point of a GPS-based trajec-
tory is a GPS location l = (lon, lat) with lon stands for longitude
and lat stands for latitude. The trajectory can be represented as
P l = [l1, l2, l3, ...]. A segment-based trajectory is a sequence of road
segments. In the road network, each road is split into a series of
segments and each segment s contains a series of GPS locations,
i.e. s = [l1, l2, l3, ...]. Therefore, segment-based trajectory can be
represented as Ps = [s1, s2, s3, ...].

Map matching is matching a raw trajectory to the road network
to get a matched trajectory. The raw trajectory is collected by
mobile devices of a moving user or vehicle. Due to the limitations
of trajectory collecting methods, trajectories may have very low
quality in sample interval and noise. Our map matching problem
mainly focuses on trajectories with large noise, like the station
based trajectories and GPS trajectories with large spatial errors.
Matching this kind of trajectories requires the model to be more
robust to noise, which is difficult for those distance-based models
to satisfy.

3 THE MAP MATCHING SYSTEM: DEEPMM
The framework of our DeepMM system is shown in Fig. 1. It can be
divided into 3 parts: 1) Statistic-based trajectory augmentation, 2)
Generation-based trajectory augmentation, 3) Attentional seq2seq
map matching model. The statistic-based trajectory augmentation
and generation-based trajectory augmentation enrich the training
dataset by different ways. The third part utilizes the augmented data
to train an attentional sequence to sequence map matching model,
which maps the raw trajectories to segment-based trajectories.

3.1 Statistic-based Data Augmentation
In statistic-based data augmentation, we directly augment the trajec-
tory dataset from the real trajectories. We have real raw trajectories

and ground truth trajectories in pairs, but the size of the dataset
is too small to train a deep learning model. We simulate the gen-
erating process of the real raw trajectory by down sampling the
ground truth trajectories and adding spatial noise.

The sampling interval is the average time interval between adja-
cent trajectory points while the spatial noise is the spatial distance
between the corresponding points of real raw trajectory and ground
truth trajectory. We assume the spatial noise follows Gaussian dis-
tribution, as follows,

f (x |µ,σ 2) =
1

√
2πσ 2

e
−(x−µ )2

2σ 2 , (1)

µ is the mean or expectation of the distribution and σ is the standard
deviation, and both of them can be learned from the real data.

Suppose the average sampling interval of the real raw trajectories
and ground truth trajectories are δt and δ ′t respectively. Then we
randomly sample the generated ground truth trajectory points with
a sampling rate of δ ′t /δt . After that, the learned Gaussian noise
distribution is added to these subsampled trajectories.

3.2 Generation-based Data Augmentation
Augmenting trajectory dataset just by duplicating existing trajec-
tories is not enough, because existing trajectories only covers a
certain area of the road network. Other parts of the road network
still lack training data. Thus, we can generate trajectories based on
the road network to enrich the training data. The trajectory gener-
ation process can be divided into three steps. In the first step, we
use a routing algorithm and road network to generate the shortest
ground truth routes. In the second step, we use some techniques
to perturb the shortest routes, making it more realistic. Finally, we
implement the sampling interval and noise distribution from real
trajectory data to generate the corresponding raw trajectories.

3.2.1 Shortest Ground Truth Trajectory. First, we use a route plan-
ning algorithm to generate trajectories. To plan a route, we only
need to give the origin and destination. Empirically, more training
data derive a better result. Thus, we uniformly choose the origin
and destination from the region of the map so that there are enough
data to learn about each part of the map. Given the origin and des-
tination, we use a route planning algorithm 1 based on the Dijkstra
algorithm, which generates the shortest route between these two
locations.

3.2.2 Perturbed Ground Truth Trajectory. In practice, people do
not always follow the shortest route. Thus, we propose a trajectory
perturbation method to simulate the real situation. The main idea
is adding spatial noise at some waypoints of the shortest trajectory.
First, we generate the shortest route R by a routing algorithm.
Second, according to the route length d , we randomly choose the
number of split waypoints, which is used to split the trajectory. It is
calculated as NW = d/α ∗ p, where α is a parameter to control the
average number of waypoint andp ∈ (0, 1) is a random perturbation.
From the equation, we can see that the split waypoint number NW
is directly proportional to the length of the route d . Because longer
route contains more uncertainty. Third, we randomly choose NW

1https://github.com/graphhopper/graphhopper
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Figure 1: DeepMMmap matching system framework

waypoints from the shortest route R and add different noise at each
waypoint.

3.2.3 Generate Raw Trajectory. The final step is to generate raw tra-
jectory from the generated ground truth data. Same as the statistic-
based augmentation, we subsample the generated ground truth
trajectory and add Gaussian noise.

3.3 Attentional seq2seq Model
We model the map matching problem as a sequence to sequence
problem. The input sequence is the raw trajectory and output se-
quence is the segment-based trajectory. We divide the whole map
into 100 meters * 100 meters square locations and translate each
location ID into a one-hot vector. The one-hot vector is supposed
to capture the geographical information of the location and other
useful information. The architecture of our map matching model is
described Fig. 1. The first core component is location embedding of
the input sequence. And then we use a sequence to sequence model
[8], which is a general end-to-end approach to map sequences to
sequences. It uses multilayered Long Short-Term Memory (LSTM)
to map the input sequence to a vector of fixed dimensionality, and
then another deep LSTM to decode the target sequence from the
vector. Further, we apply the attention mechanism to strengthen
its capability to capture the long and complicated dependencies.

4 PERFORMANCE EVALUATION
4.1 Evaluation Setup
4.1.1 Dataset and Preprocess. We experiment on a vehicle trajec-
tory dataset which is a vehicle GPS trajectory dataset collected in a
large part of urban area of Beijing. It covers a rectangular area from
(116.36, 39.89) to (116.46, 39.96) which is 8.4 km long and 7.1 km
wide. The dataset contains 12436 high-quality trajectories. Every
trajectory has a length of at least 2 kilometers and the average
sampling interval is 11 seconds.

We first use the state-of-the-art algorithm, HMM map matching
algorithm [6], to map the trajectories to the road network. Newson

and Krumm [6] shows that with a sampling interval of 10 seconds,
the map matching accuracy can reach as high as 99%, which means
the matched result is enough to be the ground truth. Same as the
processing method in [6], we simulate raw trajectories from the
ground truth trajectory by removing points and adding Gaussian
random noise. We simulated sampling intervals of 30, 40, 60, 80, 100,
and 120 seconds. The random Gaussian noise has standard devia-
tions of 10, 20, 40, 60, 80, 100, and 120 meters and zero mean. After
this, each raw trajectory is paired with a ground truth trajectory.

4.1.2 Baselines and Metric. We compare the performance of our
model with two state-of-the-art baselines HMM [6] and CTS [3].

Our evaluation metric is accuracy [9, 10] which is defined as
follows,

accuracy =
len(Psm ∩ Psд)

max{len(Psm ), len(Psд)}
(2)

where Psm is the matched trajectory and Psд is the ground truth
trajectory. They are all segment-based trajectories. len() calculates
the length of trajectory. Psm ∩ Psд is the correctly inferred road
segments.max{len(Psm ), len(Psд)} penalize a long inferred route
as the longer the route, the higher the chance that it contains the
correct road segments.

Table 1: The performance of our model and baselines.

HMM CTS DeepMM no-attention DeepMM

Accuracy 0.55 0.54 0.63 0.66
Improve 0% -1.82% +14.54% +20.00%

4.2 DeepMM Performance
4.2.1 Overall Performance. The result is shown in Table 1, with
sampling interval of 60 seconds and the standard deviation of Gauss-
ian noise of 100 meters. Our DeepMM system outperforms two
baselines HMM and CTS with the highest accuracy of 0.66. The
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reason might be that our model can not only learn the distance
between the raw locations and the road segments but also the his-
tory of all the trajectories. By the way, the accuracy of CTS is a
little bit lower than HMM’s, which is probably because the sector
information is not provided. Besides, the DeepMM model improves
3% in accuracy compared to the no-attention version, which means
the attention module works. Each predicted segment is probably
correlated with several points of the raw trajectory.

4.2.2 The Influence of Data Quality. We test our model under dif-
ferent sampling interval and noise. In Fig. 2(a), the sampling interval
is 60 seconds and the noise varies from 10 meters to 120 meters.
DeepMM performs much better than baselines when the noise
grows larger, which means DeepMM is more robust to noise. In
Fig. 2(b), standard deviation of Gaussian noise is 100 meter and
the sampling interval varies from 30 seconds to 120 seconds. The
accuracy of DeepMM is always higher than the baselines’.

(a) Noise (b) Sampling Interval

Figure 2: The performance of DeepMM with different data
quality.

4.2.3 The Effects of the Data Augmentation. The data augmentation
consists of two parts: statistic-based augmentation and generation-
based augmentation. We evaluate these two parts respectively. Here
we incorporate the best baseline HMM for comparison.

(a) Statistic-based Augmentation (b) Generation-based Augmentation

Figure 3: The performance of data augmentation methods.

The duplication times of statistic-based augmentation range from
1 to 20. 0 means do not apply statistic-based data augmentation.
Meanwhile, the size of the generated trajectories is set to a fixed
number of 700 thousand. Fig. 3(a) shows that when increasing
the duplication times, the accuracy improves enormously from 0.5

to 0.66. The best performance is reached when the original real
training dataset is expanded by 10 times. Besides, doubling the
original dataset exceeds the best performance of baselines.

To evaluate the performance of generation-based augmentation,
we set the statistic-based augmentation multiples to 10 and vary
the generated data from 0 times to 8 times of the real data. From
Fig. 3(b) we can see that adding only twice the real data, accuracy
increases from 0.566 to 0.656, which means the generated data is
effective. Increasing the size of the generated dataset, the accuracy
continues to rise. The accuracy reaches 0.66 at 4 and remains steady
to 8 times of real data.

In conclusion, both augmentation methods bring large perfor-
mance improvement to our deep learning model.

5 CONCLUSION
In this paper, we investigated the task of map matching by lever-
aging the power of deep learning. The proposed DeepMM system
employs two trajectory augmentation methods to enrich the train-
ing dataset and an attentional seq2seq model to map trajectories to
road networks. Extensive experiments on a mobility dataset show
that our system significantly outperforms existing algorithms. Our
work is a preliminary attempt to solve the map matching problem
using deep learning methods. We believe deep learning has a great
prospect in this area in the future.
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