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ABSTRACT
Realistic simulation of a massive amount of human mobility data

is of great use in epidemic spreading modeling and related health

policy-making. Existing solutions for mobility simulation can be

classified into two categories: model-based methods and model-free
methods, which are both limited in generating high-quality mobility

data due to the complicated transitions and complex regularities

in human mobility. To solve this problem, we propose a model-
free generative adversarial framework, which effectively integrates

the domain knowledge of human mobility regularity utilized in

the model-based methods. In the proposed framework, we design

a novel self-attention based sequential modeling network as the

generator to capture the complicated temporal transitions in human

mobility. To augment the learning power of the generator with the

advantages of model-based methods, we design an attention-based

region network to introduce the prior knowledge of urban structure

to generate a meaningful trajectory. As for the discriminator, we

design a mobility regularity-aware loss to distinguish the generated

trajectory. Finally, we utilize the mobility regularities of spatial

continuity and temporal periodicity to pre-train the generator and

discriminator to further accelerate the learning procedure. Exten-

sive experiments on two real-life mobility datasets demonstrate

that our framework outperforms seven state-of-the-art baselines

significantly in terms of improving the quality of simulated mobility

data by 35%. Furthermore, in the simulated spreading of COVID-19,

synthetic data from our framework reduces MAPE from 5% ∼ 10%

(baseline performance) to 2%.
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1 INTRODUCTION
Due to the outbreak of COVID-19 around the world since Jan.

2020, its spreading modeling becomes an emergent topic for health

organizations and national government to support public health

policy-making. To accurately model the spatial diffusion of COVID-

19 [12, 23], the mobility trajectory of populace becomes a funda-

mental component when it determines the strength and speed of

the spreading to a large extent. Although a massive amount of mo-

bility data are generated and collected every day via smartphone,

they are hard to be directly utilized in the practice due to the pri-

vacy issue and commercial concern. Moreover, the direct replay

of collected data is also not enough for advanced modeling, e.g.,

counterfactual scenarios like what will happen if more people travel

with public transportation. Thus, the realistic simulation of human

movement to generate massive high-quality individual mobility

trajectory becomes a valuable and important problem.

To capture the detailed spreading procedure of the epidemic,

we need to simulate the fine-grained movement (e.g., whereabouts

of individual in each hour of the day) of massive individuals in

the daily life. From many years ago, this problem has been inves-

tigated by the researchers from transportation and physics fields

and model-based methods [10, 11, 20, 30] are proposed with cap-

turing the regularity of human mobility behaviors [7, 26]. These

methods assume that human mobility can be modeled by limited

parameters with explicit physical meaning and these parameters

describe the key characteristics and patterns of human mobility,

e.g., the temporal periodicity, spatial continuity, etc. By extracting

these patterns from real-world mobility data, researchers leverage

the techniques of decision tree [11] and Markov process [30] to de-

sign various human mobility models. However, in practice, human

mobility exhibits complex sequential transitions between locations,

which can be time-dependent and high-order. Besides, other factors

like irregular patterns and various exploration schemes are also

important characteristics of individual mobility. Relying on the

simplified assumptions of human mobility behaviors, model-based
methods overlook these complicated human mobility patterns and

thus fail to accurately model real-world mobility behaviors.

On the other hand, with the recent success of generative adver-

sarial network (GAN) [8], researchers propose model-free methods
to learn to simulate the human mobility behaviors from the real

data [16, 24]. Different from the model-based methods, model-free
methods give up explicitly extracting mobility patterns with physi-

cal meaning, and move the way to build a neural network-based

generative model for directly learning to simulate human mobility

behavior from the real-world mobility data. While these model-free
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methods might have better performance since they do not rely on

simplified assumptions of human mobility, the pure learning par-

adigm without utilizing the prior knowledge of human mobility

patterns makes their learning procedure inefficient and ineffective

in the practice. Besides, it is also hard for them to capture the hidden

patterns of human mobility when learning with noisy and inac-

curate raw data. In summary, while model-based methods succeed
in modeling the human mobility patterns with simplified assump-

tions and model-free methods try to learn from data directly, both

of these two types of existing methods fail to simulate the realistic

human mobility effectively and efficiently. As a result, the epidemic

models based on these unreal mobility simulation methods also fail

to reproduce and predict the spreading of epidemic.

In this paper, we propose a novel framework to fundamentally

combine the advantages of the model-based methods and model-free
methods to achieve the high-quality simulation of human mobility.

As mentioned before, human mobility simulation is challenging

due to the complicated transitions and complex regularities. Based

on the classic GAN framework, we propose specific designs in the

generator, discriminator and the training procedure to solve these

challenges. Concretely, we design a novel self-attention based se-

quential modeling network as the generator to capture the complex

temporal transitions in human mobility including the long-term

and time-dependent patterns. More importantly, we enhance the

framework by introducing the prior knowledge of human mobility

regularities considered in themodel-based methods. First, we design
an attention-based network in the generator to model the effects

of the urban structure on shaping human mobility by considering

the prior relations between locations from multi-view. Second, we

introduce the mobility regularity-aware loss to inspire the discrim-

inator to distinguish the mobility trajectory by considering the

crucial mobility patterns including the temporal periodicity [18]

and spatial continuity [7]. Finally, we propose to utilize the mo-

bility regularities of spatial continuity and temporal periodicity to

pre-train the generator and discriminator to further improve the

learning efficiency and final performance.

Our contributions can be summarized as follows.

• We propose a novel generative adversarial framework
1
, which

combines the advantages of model-free methods and model-based
methods to generate realistic and high-quality human mobility by

directly learning to simulate from the real-world mobility data.

• We propose to utilize the prior knowledge of human mobility

regularity to improve the learning efficiency and performance by

introducing the urban structure modeling component in genera-

tor and mobility regularity-aware loss in discriminator. Besides,

we also utilize the mobility regularities to design pre-train strate-

gies to further improve the model efficiency and performance.

• We conduct extensive experiments on two real-life mobility

datasets and demonstrate that the proposed framework outper-

forms all the state-of-the-art baselines significantly, e.g., reducing
the difference measured by four Jensen–Shannon divergence

based metrics by more than 35%. Furthermore, we apply syn-

thetic data in the COVID-19 spreading modeling and produce

much closer simulation results to the real data by reducing MAPE

from 5% ∼ 10% to 2%.

1
Our codes: https://github.com/FIBLAB/MoveSim

2 PROBLEM STATEMENT
Humanmobility data can be defined as a spatial-temporal trajectory

S = [x1,x2, . . . ,xn ], where ith element xi is a spatial-temporal

record defined as a tuple (li , ti ), li denotes the location identification,
which can be GPS coordinates (lat , lon) or a region ID ri . Besides, ti
is the timestamp of ith visiting record. Based on the above notation,

the mobility trajectory generation problem is defined as follows.

Definition 1 (Mobility Trajectory Generation). Given a
real-world mobility trajectory dataset, generate a realistic mobility
trajectory Ŝ = [x̂1, x̂2, . . . , x̂n ] with a θ -parameterized generative
model G by the following formulation:

pθ (Ŝ) =
n∏
i=1

pθ (x̂i |x̂1, . . . , x̂i−1) ,

where pθ denotes the generation distribution from generator G. The
generation of trajectory Ŝ via generator G is a sequential decision
process, whose probability is described as the multiplication of the
probability of each generated spatial-temporal point x̂i .

In terms of generative adversarial networks [8], it simultaneously

trains a generator Gθ and a discriminator Dϕ within a min-max

game to learn to generate new data with the fed of real data. In a

typical GAN framework, a generator is trained to fool the discrimi-

nator in distinguishing fake samples. Meanwhile, the discriminator

is trained to distinguish the samples from real data distribution or

fake data distribution from the generator. Following the original

paper [8], the min-max game is optimized as follows,

min

θ
max

ϕ
Ex∼pd

[
logDϕ (x)

]
+ Ex∼Gθ

[
log

(
1 − Dϕ (x)

)]
,

wherepd denotes the real data distribution,Gθ is theθ -parameterized

generator, Dϕ is the ϕ-parameterized discriminator, x is the data

sample. Following-up works propose various loss [1] and design

specific structures [13, 31] for the generator and discriminator to

improve the performance and stability of GAN for many gener-

ative tasks like image and text generation. However, due to the

specific characteristics and regularities of human mobility, these ex-

isting methods cannot be directly applied in the mobility trajectory

generation task.

3 METHODS
Figure 1 presents the proposedMoveSim framework, which includes

a generator G for simulating the mobility behavior and a discrimi-

nator D for distinguishing the generated mobility trajectory from

real mobility data.

3.1 Generator
As presented in Figure 1, the generator G consists of two com-

ponents: SeqNet for directly generating the sequential transition

among different locations and RegNet for modeling the effects of

urban structure on human mobility which utilizes the prior knowl-

edge of human mobility patterns.

3.1.1 SeqNet: Modeling the Temporal Transition of Mobility. To cap-
ture the complicated sequential transition regularities in mobility

trajectories, we design a self-attention based sequential modeling



Figure 1: The MoveSim framework for human mobility simulation.

Figure 2: Illustration of the SeqNet architecture.

unit SeqNet. As the core component of the generatorG , SeqNet gen-
erates the mobility trajectory sequence and captures the correlation

in the sequence with above attention mechanism.

Figure 2 presents the architecture of SeqNet. The first spatial-
temporal point is generated by a sampled location l0 from the

physical space based on the population density and a fixed start time

t0 = 0. Start from this point, SeqNet begins to sequentially generate

spatial-temporal point to construct the mobility trajectory. We

discrete space and time and encode them as one-hot vectors. Then,

the location and time embedding modules convert and concatenate

the raw input spatial-temporal point into a dense representation

vector denoted as xe ,

xei = tanh([Wl li ;Wt ti ]),

whereWl andWt are the learnable parameters of embedding table,

xei is the vector representation of ith generated point.

Based on the spatial-temporal point representation xe , we design
a self-attention based network to generate the trajectory sequen-

tially. While the self-attention mechanism [27] directly captures

the correlation between each element in the sequence, it is able

to better model the high order and long-term patterns in mobility

behavior when compared with the widely used RNNs [5, 21, 29].

Besides, with the joint representation of the spatial-temporal point,

SeqNet is also able to capture the time-dependent transitions. Here,

we first project xei with three independent non-linear operations

into three vectors: query vectorQi , key vector Ki , and value vector
Vi . Then, we apply scaled dot-product attention on them to obtain

the weighted sum of value vectors as the feature representation of

the past trajectory. The formula is as follows,

Q = ReLU (X eWQ ), K = ReLU (X eWK ),V = ReLU (X eWV ),

SA = softmax

(
QKT /

√
d
)
V ,

whereX e
is the batch set of xe , SA is the output of the self-attention

layer, andW is the learnable weight. Furthermore, we use multi-

head and stacking operations to model the relation from different

subspaces to obtain a comprehensive representation of the past

trajectory. Finally, we use a linear layer to process the feature and

apply the soft-max function to obtain the probability distribution

of the next location.

3.1.2 RegNet: Capturing the Effects of Urban Structure. When indi-

vidual moves around the city to generate the mobility trajectory,

the attributes of location and relations between locations become

the important factor influencing human mobility [2, 11]. While

these patterns and relations can be left to the SeqNet to implicitly

learn from the mobility data via the signal from the discrimina-

tor, experiments show that such pure learning method is hard to

train in practice. Thus, we design a RegNet module to integrate the

prior knowledge of the urban structure and model their effects on

individual mobility effectively.

The structure of RegNet is presented in Figure 1. Based on the

discrete partition of urban space, we build three N × N location

relation matrix for N locations to represent the multi-view relation

between locations. These three relation matrix describe the rela-

tion among locations from different dimensions: physical distance
denotes the spatial distance of locations in free space, function simi-
larity captures the effects of urban function, and historical transition
is the direct evidence for human experience and preference. The

details of the construction of these relation matrices are as follows,

• Physical Distance Matrix (MD ): it is obtained by calculating the

Euclidean distance between all location pairs.

• Function Similarity Matrix (MF ): we first calculate the PoI cate-
gory distribution of each location and then obtain the functional

similarity between location pairs by calculating the correlation

between their PoI distribution.

• Historical Transition Matrix (MH ): it is the aggregation of all the

transitions between locations in the real-world mobility data.



Figure 3: Illustration of the discriminator D.

All the relation matrices are calculated and normalized by the row.

With these multi-view relation matrices, we utilize the intermediate

output of SeqNet to select useful information from them and refine

the next generated point respectively. To do this, we first use the

probability vector
ˆli−1 of last generated location li−1 to “select”

corresponding relation vector R from multi-view relation matrix

MD,F ,H . Then, we utilize the element-wisemultiplication operation

to fuse the current generated location
ˆli feature vector with the

multi-view relation vectors R. Finally, as a residual connection, we

use this fused relation vector to refine the intermediate output
ˆli to

generate the final result li . The formula is as follows,

[RD ;RF ;RH ] = σ (Linear ([MD ;MF ;MH ])) ∗ ˆli−1,

li = so f tmax(ˆli + ˆli ⊙ RD + ˆli ⊙ RF + ˆli ⊙ RH ),

where
ˆli−1 is the probability vector of the last location in the mobil-

ity trajectory,
ˆli is the probability vector for next generated location

before the refining by RegNet, σ is the sigmoid function, R is the

relation vector, ⊙ is the element-wise multiplication.

3.2 Discriminator
With the real-world mobility trajectories and the synthetic trajec-

tories from the generator G as input, we build a discriminator D to

distinguish them and generate learning signals to guide the opti-

mization of the generatorG. Compared with the challenging task

for generatorG , the binary classification task for the discriminator

D is much easier in most cases. To balance the training procedure

for the efficient learning of the whole framework, we need to design

a discriminator which is not so powerful and also computing effi-

ciently. Otherwise, if the discriminator is too powerful, it is hard for

the generator to learn progressively and efficiently. Thus, without

using the complicated self-attention structure, we build a simple

discriminator with convolution as a basic unit to extract features

and distinguish input. The design of D is presented in Figure 3.

3.2.1 Sequential Discriminator. As Figure 3 shows, the CNN based

discriminator consists of three components: 1) a spatial-temporal

embeddingmodule to convert raw trajectory sequence S = [x1, ...,xn ]

into a 2D feature matrix X e ∈ Rn×d ; 2) several convolution layers

to extract features from the feature matrix; 3) a linear layer with

sigmoid activation function to produce the final score based on the

flatten features from convolution layers. With the introduced CNN

based design, our discriminator can generate learning signals on

the complete trajectory from the real data or the generator G.

However, as discussed before, the trajectory sequence from gen-

erator is sequentially generated. While current discriminator can

only produce quality signal for the entire trajectory, it cannot pro-

vide proper signal for the intermediate output of partial trajec-

tory [31]. Without sufficient feedback for the intermediate gener-

ation result, it is hard for the generator to recognize where the

error is generated and accumulated, and hence cannot be effec-

tively improved and updated during training. Thus, as shown in

the discriminator part of Figure 1, we use the Monte Carlo search

(MC search) to solve this problem and generate sequential signals

for the intermediate results from the generator. To do this, we first

maintain an assistant generatorGa , which is the last step version of

the current generator G, to complete the current partial trajectory

by repeating K times with different random seed. Then, with these

completed trajectories as the input, we require the discriminator to

distinguish them and produce the loss. Finally, we average these

losses and regard it as the quality signal for the original partial

trajectory before completing.

3.2.2 Mobility Regularity-Aware Loss. While the standard discrimi-

nator generates learning signals for the generator by distinguishing

the real and synthetic mobility trajectories, it fails to capture the

regularity and constraints of the human mobility explicitly, which

is the key point of high-quality mobility trajectory simulation. Hu-

man mobility shows a high degree of temporal and spatial regular-

ity [7, 10, 26], such as the significant probability to return to few

highly visited locations and explore to the nearby locations on the

mobility trajectory. Such mechanisms have been extensively inves-

tigated in previousmodel-based methods. However, directly learning
these mobility regularities from missing and noisy mobility data is

not easy [19, 26], which is also the limitation of model-free methods.
Thus, to help the model to explicitly capture the important mobility

regularities from the noisy mobility trajectory data and improve

the learning efficiency, we introduce the mobility regularity as the

correction term of the discriminator’s loss.

While the temporal periodicity and spatial continuity are the

most essential human mobility regularity [7, 26], we construct mo-

bility regularity-aware loss in the discriminator by considering both

of them. On one hand, following the spatial continuity of human

mobility, we define the distance aware loss Ld as the accumulated

Euclidean distance of nearby transitions in the mobility trajectory.

Ld works by encouraging the model to limit the travel distance

between nearby mobility transitions. On the other hand, following

the daily periodicity of human mobility, we define the periodicity

loss Lp by calculating the Indicator distance of locations with fixed

periodicity P . For example, with 1 hour as the basic time window,

P is set as 24 which means that Lp is calculated as the number of

different locations on different days at the same hour of the day.

With the regularity of daily periodicity, people prefer to visit the

same locations at the same time of different days which will also

lead to the lower expected value of Lp . The formulation of mobility

regularity-aware loss of Ld and Lp is as follows,

Ld =
∑

i=0, ...,n−1

√
(li .x , li+1.x)2 + (li .y, li+1.y)2,

Lp =
∑

i=0, ...,n−1
DI (li , li+P ), DI (l1, l2) =

{
0, if l1 = l2;
1, if l1 , l2,



where x and y denote the coordinates of location l in Mercator

plane, DI is the Indicator function, P is the discrete periodicity, and

n is the length of the complete mobility trajectory.

3.3 Model Training
While the proposed framework owns a generator and a discrimi-

nator for min-max optimization, the standard training algorithm

of GAN is not applicable due to the following two reasons: 1) the

discrete output of generator with sampling operation on the proba-

bility distribution blocks the gradient back-propagation from dis-

criminator [31]; 2) the complicated transitions and various noise

in mobility trajectory sequence make it difficult to learn useful

knowledge from raw mobility data efficiently.

3.3.1 Reinforcement Learning based Training. For the first prob-
lem, while we can replace the discrete location with continuous

representation like GPS coordinates to avoid the first problem of

gradient back-propagation, this low dimension location representa-

tion will limit the capacity of mobility modeling and hard to achieve

promising performance, which is testified in our experiment and

past works [5, 29]. Thus, we follow the widely used technique in

text generation [17, 31] to use the reinforcement learning technique

to produce useful learning signals. In practice, we can regard the

mobility trajectory generation procedure as a Markov decision-

making process (MDP), where the agent is the generative model,

the state is the generated partial mobility trajectory, the action is

the next location, and reward is the loss from the discriminator D.
With regarding the generative model as a stochastic parameterized

policy, we can train the generative model with a policy gradient

algorithm. We follow the REINFORCE algorithm [28] to generate

the policy gradient by receiving the reward R(x) from D,

∇θ = ∇θEpθ (x)[R(x)] = Epθ (x) [R(x)∇θ logpθ (x)] ,

where θ is the parameter of generator G, x is the state (i.e., gen-

erated mobility trajectory), the reward R(x) is the loss from the

discriminator D. Based on the above gradient ∇θ , parameters θ of

generator G is updated by θ ← θ + α∇θ , where α is the learning

rate of generator G.

3.3.2 Pre-training Mechanism. While we have designed specific

structures in the generator and discriminator for the characteristics

of human mobility trajectory including the physical regularities,

the unsupervised learning paradigm, random noise in the real data

and complicated characteristics of mobility trajectory make it not

easy to obtain the promising performance when training the whole

framework from scratch [8, 13, 31]. To accelerate the training pro-

cedure and improve the performance of the whole framework, we

propose to pre-train it with human mobility modeling based tasks.

In this way, we can make full use of the mobility data and enable the

framework to preview the important regularity of human mobility

before GAN training. Based on the regularity of human mobility,

we design two pre-train tasks: mobility prediction task and mobility

regularity-aware task.

For the generator, the most important task is to generate realistic

location choices sequentially. The mobility prediction task can be

regarded as the weak version of this sequential generation task,

which only needs to predict the next location with knowing all

the previous ground-truth trajectory. Follow the similar settings to

previous works [5, 21], we utilize the mobility prediction task to

pre-train the SeqNet in our generator G. To do this, we randomly

divide the whole mobility trajectory data into a training set and

testing set with one trajectory as an instance. For each trajectory

with n points, we choose the first n − 1 points as the input and the

last n − 1 points as the target. Furthermore, we design mobility

regularity-aware task to pre-train the discriminator D. Mobility

regularity-aware task is designed as a binary classification task to

distinguish whether the input mobility trajectory exhibits impor-

tant mobility regularities including the temporal periodicity and

spatial continuity. To complete this classification task, we construct

the fake mobility trajectory by destroying the mobility pattern in

the real trajectory. We disturb the real trajectory in two ways: 1)

random select one location from the real trajectory and replace it

with one location in the whole physical space which is distant to

the original location; 2) random disturb the order of locations in one

periodicity of the trajectory. With the constructed fake trajectory

and real trajectory, our discriminator is pre-trained to distinguish

them with the binary classification loss.

4 EXPERIMENTS
4.1 Datasets
We use two large-scale real-world mobility datasets to evaluate the

performance of our framework, whose basic statistics of them are

in Table 2. Detailed information of two datasets is as follows.

• Mobile Operator: This dataset was collected in a major city by

a major mobile network operator in China. It is a large-scale

dataset including 100,000 mobile users with a duration of 1 week,

between April 1st and 7th, 2016. It records the anonymous user

ID, accessed base station, and timestamp of each accessing.

• GeoLife-GPS [35]: This GPS trajectory dataset was collected

by the MSRA Geolife project with 182 users in a period of over

five years (from April 2007 to August 2012). It contains 17,621

trajectories, where each trajectory is defined as a sequence of

points including the timestamp, latitude, and longitude.

We split the whole dataset into three parts: a training set for training

generative model, a validation set for finding the best parameters of

models, and a testing set for the final evaluation on various metrics.

For Mobile Operator dataset, we use the base station as the basic

spatial unit and the partition of it is set as 1:1:1. For GeoLife-GPS

dataset, we project GPS coordinates into the grids by containing up

to 3 digits after the decimal point. Besides, due to the limited size of

GeoLife-GPS dataset, the partition of it is set as 7:2:1. Finally, we set

the basic time slot as half an hour of the day for the convenience

and universality of modeling.

4.2 Baselines and Metrics
We compare the performance of our model with seven state-of-the-

art baselines.

• Markov [15]: It regards all the visited locations of users as states
and builds a transition matrix to capture the first-order transition

probabilities between these locations.

• DeepMove [5]: This is the state-of-the-art method for mobility

prediction, which combines neural attention with the recurrent

network to capture the periodical patterns in mobility.



Table 1: Performance comparison of our model and baselines on two mobility datasets, where lower results are better. Bold
denotes best(lowest) results and underline denotes the second-best results.

Dataset Mobile Operator GeoLife-GPS
Metrics(JSD) Distance Radius Duration DailyLoc G-rank I-rank Distance Radius Duration DailyLoc G-rank I-rank

Markov 0.0023 0.0659 0.0239 0.4212 0.1301 0.0431 0.0176 0.1452 0.0746 0.2845 0.2502 0.0964

DeepMove 0.0497 0.0206 0.0206 0.2599 0.6172 0.1163 0.1654 0.1038 0.0356 0.2279 0.3463 0.0567

TimeGeo 0.0040 0.0105 0.0074 0.0891 0.3079 0.0125 0.0193 0.1124 0.0093 0.1235 0.2764 0.0495

IO-HMM 0.0027 0.0118 0.0085 0.0724 0.2715 0.0196 0.0158 0.0972 0.0096 0.0986 0.2867 0.0557

GAN 0.0146 0.0299 0.043 0.1534 0.2981 0.0653 0.0233 0.0946 0.0834 0.2645 0.2876 0.0457

TrajGAN 0.1152 0.2194 0.0921 0.2843 0.1028 0.1514 0.1326 0.1954 0.0692 0.3362 0.1742 0.1034

SeqGAN 0.0052 0.0158 0.0026 0.1193 0.0998 0.0129 0.0165 0.0757 0.0079 0.0846 0.0964 0.0242

Ours 0.0025 0.0068 0.0014 0.0844 0.0501 0.0087 0.0088 0.0539 0.0018 0.0635 0.0833 0.0096

Table 2: Statistic information of two mobility datasets.

Datasets Mobile Operator GeoLife-GPS
Duration 1 week 5 years

#Users 100,000 182

#Records/User 261 453

#Locations 9000 base stations GPS coordinates

• TimeGeo [11]: It defines the weekly home-based tour number,

dwell rate, burst rate to model the temporal choices and utilizes a

r-EPR mechanism to model the spatial choices of human mobility.

• IO-HMM [30]: This method first annotates user activities from

trajectory with IO-HMM and then generate sequences of mobility

for each user with the manual assigned home and work.

• GAN [8]: Based on the general design of GAN, LSTM is selected

as the generator and CNN as the discriminator.

• TrajGAN [24]: This method flattens and embeds a trajectory in

the 2D matrix form and then uses a standard GAN to generate

the matrix-form trajectory.

• SeqGAN [31]: It proposes to combine reinforcement learning

with GAN to solve the discrete sequence generation problem, we

directly apply this method to generate the location sequence.

Following the common practice in previous works [11, 24], we

define 6 metrics to evaluate the quality of generated data by com-

paring the distribution of important mobility patterns between the

simulated mobility trajectory and the real mobility trajectory.

• Distance: travel distance, which is calculated as the cumulative

travel distance of per user in the fixed time interval.

• Radius: radius of gyration (rд ) [7], which represents the spatial

range of user daily movement.

• Duration: stay duration, which is calculated as the stay duration
of per location visiting.

• DailyLoc: daily visited locations, which is calculated as the num-

ber of visited locations per day for each user.

• G-rank: the number of visits per location, which calculated as

the visiting frequency of top-100 locations.

• I-rank: an individual version of G-rank.

To get the quantitative results, we use Jensen–Shannon divergence

(JSD) to measure the similarity between the mobility pattern dis-

tributions of generated trajectory and real trajectory data, which

is defined as JSD(p;q) = h ((p + q)/2) − (h(p) + h(q))/2, where h is

the Shannon information, p and q are distributions.

4.3 Performance Comparison
We compare our framework with 7 state-of-the-art baselines on

two mobility datasets. To evaluate the quality of the generated

mobility trajectory, we calculate its mobility pattern distributions

on 6 metrics and compare them with the distribution from real data

by JSD. The comparison results are presented in Table 1.

Performance onMobile Operator Dataset: As Table 1 shows,
mobility prediction methods (Markov and DeepMove) perform worst

on the mobility generation task when both of them are trained with

the short-term goal (next step prediction). While Markov performs

well on single Distance metric, we find that it is achieved by only

visiting very limited locations with higher error in DailyLoc metirc.

With explicitly considering the mobility regularity in the parame-

ters, model-based methods achieve the best results of baselines with
ranking 1st on DailyLoc metric (IO-HMM) and ranking 2nd on two

metrics (TimeGeo). For model-free methods, SeqGAN performs best

with ranking 2nd on two metrics of Duration and G-rank, and other
two GAN based methods perform worse when failing to model the

specific characteristics of mobility trajectory with image format

(TrajGAN) and GPS coordinates (GAN). Our proposed model-free
and model-based combined framework achieves the best results

with ranking 1st on 4 metrics and ranking 2nd on 2 metrics. For 4

ranking 1st metrics, compared with the best baseline, our method

reduces the JSD with more than 35%. For 2 ranking 2nd metrics

of Distance and DailyLoc, our method also obtains competitive

performance with the best baseline.

Performance on GeoLife-GPS Dataset: The results of base-
lines on the GeoLife-GPS dataset are different from on the Mobile

Operator dataset, which can be explained by the small data volume,

dense sampling rate and short time window of GeoLife-GPS dataset.

In the GeoLife-GPS dataset, mobility regularity is not so obvious and

becomes less important in mobility modeling. Thus, model-based
methods, TimeGeo and IO-HMM, which need to estimate accurate

mobility regularity parameters from the raw data, becomes worse,

and the model-free methods (especially SeqGAN) performs better.

While the characteristics of mobility dataset changes, our model

still performs best in most of the metrics and reduces the JSD by

more than 14%.

We also present the global spatial population distribution of

Mobile Operator dataset in Figure 4. In Figure 4, we aggregate the

population from base stations into nearby grids and the grids with

more population will be brighter with a yellow color. We can find



(a) Ground Truth Population@6 P.M. (b) Synthetic Population@6 P.M.

Figure 4: Spatial distribution of the aggregated population.

that the spatial distribution of our synthetic population is very simi-

lar to the ground truth population distribution from the real data. In

summary, the above results on two mobility datasets demonstrate

the superiority of our model on mobility simulation from different

views. With explicitly modeling the mobility regularity in the GAN

based framework design, our model achieves promising results on

individual mobility simulation.

4.4 COVID-19 Spreading Simulation
We conduct a simulation experiment on the spreading of COVID-19

with SEIRmodel to testify the utility of synthetic mobility trajectory

from Mobile Operator dataset. We follow recent work [12] to imple-

ment the spreading model of COVID-19 and detailed parameters of

the simulation are presented in Table 3.

Table 3: Detailed parameters for COVID-19 simulation [12].

Parameters Value Parameters Value
close contact ratio (c) 0.2 R0 2.2

transmission period (T) 5.8 days β R0/T

incubation period (IC) 5.2 days a 1/IC

infection period (IF) 11 days γ 1/IF

During each day of simulation, infected or exposed people meet

r susceptible people while they occur in a same base station. We

assume that the probability of any two people in a same base station

coming into close contact is c . We calculate transmission probability

β using the basic reproduction rate R0 = 2.2 divided by the average

days (5.8 days) from onset to first medical visit and isolation [12].We

estimate the daily probability of becoming infectious from exposed

is a, which is the inverse of incubation period (5.2 days in [12]).

The daily probability of becoming removed from infectious γ is

calculated based on average infection period (11 days in [12]). The

formulas of infection processes are as follows,

dS

dt
= −rcβ,

dE

dt
= rcβ − aE,

dI

dt
= aE − γ I ,

dR

dt
= γ I .

In the simulation experiment, we first initialize 50 people as

exposed randomly and label their status individually. In each day,

we record the user ID of susceptible people who visit a same base

station with those exposed or infectious people according to their

trajectories in each time window. Then, these susceptible people

become exposed at probability β , weighted by probability of close

contacts c . Meanwhile, we update their status labels from suscepti-

ble to exposed. For other status updating, we do the same thing in

each day. Besides, because different trajectories caused by random

initial exposed people will result in different transmissions, we run

at least 10 simulations for each experiment.

Figure 5: MAPE of the spreading modelling of COVID-19
with different synthetic data.

We conduct above experiments on different synthetic data and

regard results from real Mobile Operator dataset as the ground

truth. Then, we calculate MAPE of different synthetic data on the

estimation of different kinds of population (E, I, R) and average

results over 7 days are presented in Figure 5. As Figure 5 shows,

synthetic data from our framework produce more similar spreading

curves to the real data by reducing MAPE from 5% ∼ 10% to 2%.

5 RELATEDWORK
In the past decade, with detailed GPS records and large-scale data

from the mobile network, the general characteristics, and regulari-

ties of human mobility have been well studied and deployed [7, 26,

34]. Furthermore, based on these mobility analyses, researchers de-

signed different methods to predict the next location of individuals

with knowing the movement history [5, 21, 29, 32]. Recently, RNN

has been utilized to predict the next location by joint modeling

the spatial-temporal transition [4–6, 21]. While these prediction

models can be directly applied to generate the trajectory, they were

trained with short-term goals (next step) and failed to generate

high-quality long-term trajectory (multi-steps).

Generative adversarial network (GAN) [8] is a method for learn-

ing generative models by a min-max game. With its simple but

effective design, GAN has been widely applied in many generative

tasks like image generation [13], language generation [31], and time

series [22]. GAIL [9] developed the imitation learning by replacing

the implicit reward function with the GAN framework and has been

successfully applied in driving behavior modeling [33], recommen-

dation [25], and so on. Different from these works, we extend the

GAN framework by designing several specific components for the

unique characteristics and regularities of human mobility, which

greatly improve the performance on simulating human mobility.

Existing works of mobility simulation can be classified into two

groups: model-based methods and model-free methods. Based on

the mobility regularity, model-based methods assume the individ-

ual mobility can be described by limited parameters with explicit

physical meaning. Early works from transportation [3, 14] relied on

the large-scale detailed user survey to calculate these parameters.

Recently, researchers [10, 11, 30] proposed to estimate these param-

eters from the large-scale mobility data and then simulate individual



mobility via Markov based models with simplified assumption of

human mobility. While achieves promising performance in some

cases, these methods with simplified assumptions cannot model

the complex mobility in reality.

Recent works [16, 24] tried to apply GAN to generate individual

mobility trajectory, which can be regarded as model-free methods.
They do not assume any regularity of human mobility and just

leave the model to learn from the data directly. With mapping the

sequential trajectory into an image, Ouyang et al. [24] utilized the

standard CNN based GAN to generate the virtual trajectory image.

Kulkarni et al. [16] testified several natural language GANs on the

short-term continuous trajectory generation task. With ignoring

the important prior knowledge of human mobility, the learning

efficiency and performance of these methods are limited. In our

work, we introduce the pattern and prior knowledge of human mo-

bility in the GAN based framework to achieve better performance

on mobility simulation.

6 CONCLUSION
In this paper, we investigate the individual mobility simulation

problem by proposing a novel generative adversarial based frame-

work to simulate human mobility with explicitly modeling the prior

knowledge and physical regularities. Following the main design

philosophy of combing the advantage of model-based and model-

free methods, our proposed human mobility simulation framework,

which captures the complicated transitions and complex regularities

of mobility, benefits the generation of high-quality mobility trajec-

tory data. The extensive results on two real-life mobility datasets

demonstrate that our framework outperforms seven state-of-the-art

baselines significantly, and it also achieve better performance in

the simulation of spreading of COVID-19. As future work, we will

consider to model the underlying motivation of human mobility

and extend the simulation to various applications.
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