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Abstract
Population flow prediction is one of the most funda-
mental components in many applications from ur-
ban management to transportation schedule. It is
a challenging task due to the complicated spatial-
temporal correlation. While many studies have
been done in recent years, they fail to simulta-
neously and effectively model the spatial corre-
lation and temporal variations among population
flows. In this paper, we propose Convolution based
Sequential and Cross Network (CSCNet) to solve
these difficulties. On the one hand, we design a
CNN based sequential structure with progressively
merging the flow features from different time in dif-
ferent CNN layers to model the spatial-temporal
information simultaneously. On the other hand,
we make use of the transition flow as the proxy
to efficiently and explicitly capture the dynamic
correlation between different types of population
flows. Extensive experiments on 4 datasets demon-
strate that CSCNet outperforms the state-of-the-art
baselines by reducing the prediction error around
7.7%∼10.4%.

1 Introduction
Population flow prediction is one of the most fundamen-
tal tasks in the urban system and is widely used in many
practical applications from urban management, transporta-
tion, to resource scheduling in the ride-sharing platform [Yao
et al., 2018; Geng et al., 2019]. Being called as crowd
flow in urban management, it can be utilized to monitor
the anomaly in the group aggregation activities to prevent
the accident in time [Zhang et al., 2017]. Being called as
traffic prediction in the transportation system, it supports
the timely sensing of traffic to meet the travel demand and
improve the transportation efficiency [Yao et al., 2019b].
With the popularity of the ride-sharing platform, it also be-
comes an essential ability for the supply-demand based in-
telligent resource schedule mechanism [Wang et al., 2017;
Yao et al., 2018]. Due to the great value in reality, many
prediction methods have been proposed in the last decades.
Before the prevalent deep learning techniques, researchers
focused on traditional time series modeling [Li et al., 2012;

Figure 1: Illustration of the population in/out/transition flow.

Xu et al., 2016b] and simple local spatial dependence [Hoang
et al., 2016; Deng et al., 2016], which failed to model the non-
linear spatial-temporal dependency between different popula-
tion flows.

Recently, deep learning has been successfully applied to
the modeling of population flow and has become the de facto
standard method in many scenarios. As the early application
of deep learning in this field, Zhang et al. [Zhang et al., 2016;
Zhang et al., 2017] propose to utilize stacked CNNs to model
the non-linear spatial dependence by processing the pop-
ulation flow from different time as multi-channel images.
Another branch of research mainly relies on the recurrent
neural network to model the temporal variation of popula-
tion flow while using simple conv unit [Yao et al., 2018;
Yao et al., 2019a] or attention unit [Qin et al., 2017; Feng
et al., 2018a] as the local spatial feature extractor for a sin-
gle region. In the third branch, by combining the advantages
of both CNN and RNN, researchers [Zonoozi et al., 2018;
Wang et al., 2019] utilize ConvLSTM [Shi et al., 2015] to
jointly model the spatial-temporal features of city-scale popu-
lation flow. To better model the dynamic correlations between
regions, some researchers try to utilize transition flow [Zhang
et al., 2019; Yao et al., 2019b] as the auxiliary feature and
achieve the state-of-the-art results in population flow predic-
tion task. Fig. 1 presents the concept of transition flow, which
represents the dynamic interaction between regions.

However, while previous deep learning works achieve
promising performance, existing methods have at least two
limitations. First, existing methods learn the spatial corre-
lation and temporal variations separately thus cannot cap-
ture their dependency efficiently. With the movement of
population, the spatial and temporal dependency become the
most important and challenging characteristics of population
flow modelling. While previous works design various mod-
els [Zhang et al., 2017; Lin et al., 2019; Yao et al., 2018;
Yao et al., 2019a] of CNN and LSTM to capture them, these
methods treat them as two kinds of features and build sepa-



rate units to process them. While ConvLSTM [Zonoozi et al.,
2018; Wang et al., 2019] provides a choice to jointly model
the spatial-temporal features, its performance is limited [Yao
et al., 2019a; Lin et al., 2019]. Second, existing methods
ignore the native relation between different types of popula-
tion flows and fail to model the dynamic correlation between
them effectively. Actually, different types of population flows
are highly correlated: the out-flow of all regions also make
up the in-flow of them, which can be captured by the popu-
lation transition flow. Existing works ignore this important
characteristic and only combine them with simple ways like
concatenating in the channel dimension [Zhang et al., 2019;
Yao et al., 2019b].

In this paper, we design a novel framework, CSCNet, to ad-
dress the former challenges and achieve better performance
for population flow prediction. To simultaneously model the
spatial-temporal dependence among population flow of dif-
ferent regions (limitation 1), we propose, Flow Recurrent
Network (FRN), to utilize the depth of convolution layers
to progressively merging population flow features from dif-
ferent time steps. In FRN, different layer convolution is not
only responsible for extracting different level spatial feature
but also responsible for capturing the sequential correlation
of population flow in different time. Furthermore, we pro-
pose Feature Cross Network (FCN) to explicitly fuse differ-
ent types of population flow including the in/out flow and the
transition flow via their native relation (limitation 2), which
will enable the modelling of the accurate and dynamic corre-
lation between them. Besides, to handle the high-dimensional
and high-dynamic population transition flow for better fea-
ture extraction and fusion, we propose an efficient transi-
tion flow compression representation and design a Transition
Flow Predictor (TFP) to predict it. In summary, our contribu-
tions can be summarized as follows,

• We design FRN with a progressive CNN structure to simul-
taneously model the spatial-temporal feature of population
flows. With the specific design in the fusion unit group,
FRN is also able to capture the periodicity (e.g., the daily
pattern) in the population flow.

• We design FCN to effectively and explicitly modelling the
dynamic correlation between different types of population
flows. Besides, with an efficient structure of transition flow
data, we also design a predictor TFP to generate its dy-
namic representation for FCN.

• We conduct extensive experiments on four real-life datasets
to demonstrate the effectiveness of our proposed CSCNet
on the population flow prediction task. Compared with the
state-of-the-art algorithms, CSCNet reduces the RMSE of
prediction by 7.72% ∼ 10.43%.

2 Preliminaries

Following the widely-used grid-based population flow defi-
nition from previous works [Zhang et al., 2017; Yao et al.,
2018; Lin et al., 2019], we define the population flow and its
prediction problem as follows.

Definition 1: Population In/Out Flow
We define the in-flow and out-flow for a grid region (h,w) at
ith time interval in the spatial map as follows:

xh,w,in
i =

∑
S∈P
|gi−1 /∈ (h,w) & gi ∈ (h,w)|,

xh,w,out
i =

∑
S∈P
|gi−1 ∈ (h,w) & gi /∈ (h,w)|,

where P represents the collection of trajectories, S =
{g1, · · · , gi, · · · , g|S|} is a trajectory in P, and gi is the spa-
tial coordinate. gi ∈ (h,w) means the trajectory point gi lies
within the grid region (h,w), and vice versa.

Definition 2: Population Transition Flow
As the extension of population flow, we define the popula-
tion transition flow map of grid region (h,w) at the ith time
interval as follows, for each grid (m,n) in it:

ym,n,in
h,w,i =

∑
S∈P
|gi−1 ∈ (m,n) & gi ∈ (h,w)|,

ym,n,out
h,w,i =

∑
S∈P
|gi−1 ∈ (h,w) & gi ∈ (m,n)|.

Here, all the parameters are similar to Definition 1. At the
ith time interval, the population flow in a H ×W grid spa-
tial map is denoted as Xi = (Xin

i ,Xout
i ) : R2×H×W . The

related population transition flow for each region in the spa-
tial map is concatenated and denoted as Yi = (Yin

i ,Yout
i ) :

R2×R×H×W , where R = H ×W is the number of regions.

Population Flow Prediction:
Given the historical observations {Xi|i = 1, 2, · · · , k − 1}
and {Yi|i = 1, 2, · · · , k − 1}, predict Xk.

3 Model Design
Fig. 2 presents the framework of our proposed model-
CSCNet. It consists of three components: 1) Flow Recur-
rent Net (FRN) for population flow (in/out flow) feature ex-
traction and naive prediction; 2) Transition Flow Predictor
(TFP) for population transition flow modelling; 3) Feature
Cross Net (FCN) for fusing features from different types pop-
ulation flow (in/out/transition flow) and explicitly modelling
their dynamic correlation.

Figure 2: The framework of our proposed CSCNet.



3.1 Population Flow Modelling via FRN
In this section, we first introduce several basic functional
units of CSCNet and then utilize them to make up the flow
recurrent net (FRN).

Basic Function Unit
Three standard CNN based function units used in the model,
Local Feature Extraction unit, Feature Fusion unit, and Pre-
dictor unit, are presented in Fig. 3. All of them are built
upon a 3x3 convolution unit and a following relu func-
tion. The basic parameters of 3x3 convolution unit include
kernel size = 3, stride = 1, and padding = 1. Here,
we do not use any pooling function, thus preserving the fea-
ture size with the original size of H × W . Based on this
standard conv unit, we build three basic function units for
extraction, fusion and prediction as follows. Local feature
extraction unit consists of two 3 × 3 conv units and a fol-
lowing relu function. With a raw population flow map as
input, the local extraction unit extracts spatial features from it
and outputs primitive city-scale flow features. Feature fusion
unit is introduced to fuse features from different sources with
different characteristics to obtain a comprehensive represen-
tation of them. It first uses a concate unit to directly merge
features and then apply a standard conv unit to fuse features
to obtain the new feature. Finally, the Predictor unit with a
standard conv is utilized to convert features into the predicted
population flow map.

Figure 3: Three basic units of CSCNet, where “local” refers to a
short-term time step and “global” refers to a long-term time window
with several time steps.

Flow Sequential Net
Based on three standard function units introduced above, we
make up the flow sequential net (FSN) as the primitive pop-
ulation flow prediction model. With a sequential population
flow map as input, we first utilize a shared local extraction
unit to extract spatial features of each time step and then stack
feature fusion units to sequentially process the spatial features
to obtain the global feature map. Finally, the global feature
map is converted into the population flow map prediction by
a predictor unit.

Different from previous works [Zhang et al., 2017; Lin et
al., 2019] who directly regard sequential population flow map
as different channels of an image and model them as a whole,
we progressively model the sequential relationships between
different population flow maps via the shared local extraction
unit and sequential fusion units. From another view, our se-
quential fusion nets can also be regarded as a deeper feature
extractor which is helpful for the final prediction. Except for

Figure 4: Basic sequential modeling framework (FSN) of CSCNet.

the predictor unit, the feature map generated by the final fu-
sion unit can also be directly output to other components like
feature cross net for further processing.

Flow Recurrent Net
In Fig. 5, we present the design of FRN as the advanced re-
current version of FSN. Many previous works [Zhang et al.,
2017; Zonoozi et al., 2018; Yao et al., 2019a] have demon-
strated that periodicity is one of the most distinguishing char-
acteristics in the population flow prediction problem and the
most important periodicity is the daily pattern. Based on this
observation, we upgrade FSN as FRN to capture the daily
pattern of population flow.

Figure 5: Flow recurrent net (FRN) in CSCNet.

In FRN, we introduce a periodical fusion unit group to
force each fusion unit to focus on modeling the population
flow feature of the specific time step. All the periodical fusion
unit in the group work together to cover the whole periodic-
ity of population flow. When feeding population flow from
different time step, the related fusion unit with the specific
period pattern is triggered to fuse the local features. Fig. 5
presents a simple example, where different population flow
from different days with the same hour of a day will use the
same fusion unit for feature fusing. In Fig. 5, we build 12
fusion nets to model the different relationships between pop-
ulation flows in different time periods (2 hours as one time
step). With a 4 slices population flow (t1 ∼ t4) as input, lo-
cal spatial features are first extracted from the shared local
feature extraction unit. Then, four local features (t1 ∼ t4)
are processed by four specific fusion units (T1 ∼ T4) with the
same time labels. Finally, the fused feature map is fed into the
predictor unit to obtain the prediction result. When we input
the population flow from t2 ∼ t5, the activated fusion units
become (T2 ∼ T5) and the local feature extractor and the pre-
dictor unit keeps unchanged. It is noted that the normal input



data of FRN is the population in/out flow and we can also
extend it with the transition flow in the channel dimension
(denoted as CSCNet-RTC+ in the evaluation section).

3.2 Transition Flow Modelling via TFP
In this section, we introduce how to process the population
transition flow and design a simple transition flow predictor
to predict transition flow in the next time step for final fusion.

Truncated Transition Flow
As mentioned before, the population transition flow is high-
dimensional and sparse. High-dimension of population flow
path means that for a city with H ×W grids, the size of pop-
ulation transition flow map is up to H×W ×H×W . As the
left flow map in Fig. 6 shows, each grid region in the city will
have a H ×W transition (in) flow map to represent the de-
tails of the population (in) flow. Furthermore, as Fig. 6 shows,
the transition flow map for each region is always very sparse
which means only limited regions have values. Both of these
make the processing of transition flow challenging. Based
on the statistics of transition flow on the real world mobility
data, we observe that the range of influence of the transition
flow for each region is limited to its adjacent regions, e.g.,
more than 60% flow is from/to the adjacent regions within 1-
hot distance. As Fig. 6 shows, we first arrange the transition
flow map of H × W grid regions in the z-axis direction to
obtain the original transition flow tensor. While it is similar
to [Zhang et al., 2019], we introduce two different designs
for effective feature extraction. First, without combining the
in/out transition flow map in one tensor, we construct two
separate transition map tensors and leave their fusion in the
following network.

Figure 6: Truncated transition flow map construction.

More importantly, we design the truncated transition
flow map to represent the delicate direction information of
the population transition flow. While containing more in-
formation about the flow, the complete transition flow map
is high-dimensional and high-dynamic. Thus, we propose
a truncated transition flow map to distill knowledge from it
with only preserving local direction information. With this
normalization operation, the value in the truncated flow path
map is limited into [0, 1], which benefits for the following
processing and model training. As Fig. 6 shows, we summa-
rize the direction information in the circle of r = 1, e.g., the
top-right direction contains about 50% of the outflow from
the center region. We design two aggregation methods to ob-
tain this normalized truncated transition flow map. The first
method accumulates the population variation in each direc-
tion, e.g., when we only use the circle of r = 1 to represent

Figure 7: The flow path predictor for CSCNet.

the flow direction, all the population variations outside the
circle are accumulated into the nearby regions in the circle.
And then we normalize the flow in different directions by the
total flow from all directions. The second method omits the
population variation outside the circle and only calculates the
population variation in the circle as the approximation of flow
in different directions. Due to the continuity of mobility, the
second method obtains competitive results and computes ef-
ficiently in practice.

Transition Flow Predictor
Following the definition of the truncated transition flow map,
we design a transition flow predictor (TFP) to generate the
transition flow map on the target time to enable the modeling
of dynamic spatial correlation. Based on the basic functional
units introduced before, we first utilize a fusion unit to com-
bine the recent L truncated transition flow map in the channel
dimension. Here, different from the former standard fusion
unit, we extend the input fusion unit from 2 to L, which is the
length of the historical population flow. Then, we stack k lo-
cal extraction units to model transition flow features. Finally,
we utilize the standard predictor unit to obtain the transition
flow prediction at the target time step with different channels
denoting the population flow from different directions. The
structure of TFP is presented in Fig. 7.

3.3 Flow Feature Fusing via FCN
Finally, we introduce how to effectively model the dynamic
correlation between different types of population flows (in-
cluding in/out/transition flow) with explicitly motivation.

Existing works [Zhang et al., 2017; Zonoozi et al., 2018;
Yao et al., 2019a] on population flow map prediction combine
the inflow and outflow in the different channel of a unified
flow map tensor and utilize various CNN models to directly
capture the variation of these flows. This operation omits the
organic correlation between flows and fails to obtain better
performance. Different from them, we propose to utilize the
transition flow map to explicitly capture the correlation be-
tween the inflow and outflow to better model the population
mobility pattern and obtain more accurate prediction results.

By taking the inflow feature cross net branch as an exam-
ple, the core idea of FCN is that the inflow feature of a re-
gion can be explained as the weighted sum of the outflow
features from its nearby regions, which is recorded by the
transition flow. The whole design of the inflow cross net is
presented in Fig. 8. In FCN, we process the auxiliary outflow
feature with transition flow feature to obtain the tuned feature
map which can be regarded as a kind of “new” inflow fea-
ture, and details of this operation are introduced later. Here,
the transition flow features are the dynamic prediction results



Figure 8: Feature cross network (FCN) for the inflow branch.

Figure 9: Intuitive illustration of applying the transition flow feature
to the outflow feature to obtain the “new” inflow feature.

from TFP. Then, we combine this “new” inflow feature with
the original inflow feature to obtain the fused feature for final
inflow prediction. To do this, we use two independent conv
units to process the original inflow feature and the “new” in-
flow feature. Then we fuse them via the element-wise addi-
tion as the final fused feature.

Fig. 9 presents a simple case showing how to generate the
“new” inflow feature from the original outflow feature map
by utilizing the transition flow map as the guidance. In the
outflow feature map, we take region A, B, C as examples to
calculate the “new” inflow feature map. Based on the inflow
transition map of region B, we know that 50% of inflow of
region B is from its bottom direction region A. This indicates
that the flow from region A is more important for region B
than flow from other regions. Thus, we need to assign a big-
ger weight for region A in the generation of the inflow of
region B. Basically, we use the normalized value in the tran-
sition flow map as the initial weight for this goal. The case for
region C presents the outflow from region A is not so impor-
tant for the inflow of it. By repeating this operation around
the whole outflow map, we can obtain the ”new” inflow fea-
ture map. For region (h,w) in the ”new” inflow feature map,
its value is calculated as follows,

flownew
in [:, h, w] =

h+r,w+r∑
i=h−r,j=w−r

flowout[:, i, j] ◦ flowpre
trans[id(i,j), h, w],

id(i,j) = (i− (h− r)) ∗ (2r + 1) + (j − (w − r)).

where flownew
in is the new in-flow feature, flowout denotes

the outflow feature from FRN, flowpre
trans is the transition

flow feature from TFP, and r denotes the spatial range of tran-
sition flow feature.

3.4 Training
While CSCNet contains three independent components for
different goals, we train them one by one to obtain the final
complete model. First, we train two independent FRNs for

the population in/out flow prediction. Then, we process the
truncated transition flow maps and train two TFPs to predict
the future transition flow. Finally, based on the in/out flow
feature from FRNs and predicted transition flow from TFPs,
we train FCNs for feature fusion and obtain the final predic-
tion results.

4 Performance Evaluation
4.1 Datasets
We evaluate our model on four population flow data. The first
two datasets MobileBJ and BikeNYC(agg) are from previous
work [Lin et al., 2019]. Since these two datasets only con-
tain aggregated population flow data, we construct new pop-
ulation flow data with transition flow from two public data
sources: NYCTaxi1 and NYCBike2. We extract one-month
population data from the public source and follow [Zhang et
al., 2017; Lin et al., 2019] to process it. The first three weeks’
data is used for training, and the left is used for testing.

4.2 Baselines
We compare our model with 8 state-of-the-art baselines. The
first 6 baselines only consider the population in/out flow.
• HA: Historical Average, which predicts population flow by

the average value of historical flow.
• ARIMA [Box et al., 2015]: One of the most classic meth-

ods for time series modeling.
• ConvLSTM [Shi et al., 2015]: It combines the convolution

and LSTM to capture both the spatial and temporal features
simultaneously.

• Peoridic-CRN [Zonoozi et al., 2018]: It stacks several
ConvGRU layers with the pyramidical structure and also
consider the memory based periodic representation.

• ST-ResNet [Zhang et al., 2017]: It uses stacked CNNs with
residual connection to model population flows as images
with different channels.

• DeepSTN+ [Lin et al., 2019]: It extends ST-ResNet by
modeling long-range dependence and semantic effects.

The left 2 baselines utilize the transition flow information to
improve performance.
• STDN [Yao et al., 2019b]: With attention for modelling

periodicity shift, it also designs a flow gating function to
fuse the transition flow feature for traffic prediction.

• MDL [Zhang et al., 2019]: With the similar backbone of
ST-ResNet, it utilizes the multi-task learning to predict the
population flow and the transition flow simultaneously.

Five variants of proposed CSCNet are as follows.
• CSCNet-S: most basic version of CSCNet, which only con-

tains a FSN (Flow Sequential Network).
• CSCNet-R: advanced version of CSCNet-S, which replaces

FSN with a FRN considering the periodicity.
• CSCNet-RC: combination of FRN and FCN, where TFP is

removed and transition flow is directly fed to FCN.
• CSCNet-RTC: which contains all the special designed

components: FRN, TFP and FCN.
1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2 https://www.citibikenyc.com/system-data



• CSCNet-RTC+: the transition flow data is also fed into
FRN by directly concating in the channel dimension.

Metrics and Parameter Settings
We use Root Mean Squared Error (RMSE) and Mean Abso-
lute Error (MAE) as metrics, which are as follows:

RMSE =

√√√√ 1

N

N∑
i=1

||Xi − X̂i||22,MAE =
1

N

N∑
i=1

|Xi − X̂i|,

where Xi and X̂i denote the ground-truth and the prediction
at the ith time interval. N is the total number of samples in
the testing data. RMSE is also used as the loss function.

The basic parameters of conv can refer to Fig. 3 and the
default output channel of each conv is 64. In FRN, the de-
fault number of fusion unit is 24 and the default length of
sequential input is 24. In FCN, the default spatial range of
transition flow is r = 1. For different baselines, we follow
the suggested parameters int the original papers. Besides, all
the reported results in the experiments are the average of at
least 5 independent runnings.

4.3 Experiment Results
Performance of FSN&FRN We first compare CSCNet-S and
CSCNet-R with baselines on the MobileBJ and BikeNYC
data to present the effectiveness of FSN and FRN in Table 1.
The results of baselines are from the original paper [Lin et al.,
2019] and the performance of DeepSTN+ in the tale includes
the semantic parts while we do not consider the semantic ef-
fects of PoIs in our model. By simultaneously modeling the
spatial-temporal variations with progressively fusing the pop-
ulation flow from different time intervals in different layers,
CSCNet-S outperforms the best baseline DeepSTN+ by re-
ducing the RMSE 1.8% ∼ 7.8%. Considering the periodicity
in the model design, CSCNet-R outperforms CSCNet-S and
further reduces the prediction error. Besides, compared with
the ConvLSTM based models like Peoridic-CRN, which is
another choice for simultaneously spatial-temporal modeling,
our model CSCNet-R with progressively CNN structure also
performs much better. Based on the results of two datasets in
the top 7 rows in Table 2, we observe that our proposed FRN
(CSCNet-R) continuously outperforms than all the baselines
with more than 3% prediction error reduction.

Performance of TFP&FCN We compare CSCNet with
more state-of-the-art baselines on NYCBike and NYCTaxi
data in Table 2 to evaluate the effectiveness of TFP and
FCN. First, we can observe that STDN and MDL with utiliz-
ing transition flow data achieve better results than the previ-
ous best baseline DeepSTN+, which presents similar perfor-
mance as CSCNet-R. Second, CSCNet-RTC performs much
better than the best baseline MDL by reducing 6.27%/3.18%
prediction error and also better than STDN by reducing
10.98%/7.22% prediction error on NYCBike/NYCTaxi data.
The superior performance of CSCNet-RTC demonstrates the
effectiveness of our design in explicitly modelling the dy-
namic correlation between different types of population flows
(in/out/transition flow). Third, CSCNet-RC without TFP per-
forms worse than the CSCNet-RTC, which presents the ne-
cessity of constructing and predicting the dynamic transition

Table 1: Comparison of different baselines and variants of CSCNet
on MobileBJ and BikeNYC(agg).

Dataset Model RMSE ∆ RMSE MAE
ARIMA 10.89 82.94% 3.25
ConvLSTM 6.41 7.67% 2.54
Peoridic-CRN 6.37 6.88% 2.70

BikeNYC ST-ResNet 6.48 8.73% 2.40
(agg) DeepSTN+ 5.96 0.00% 2.29

CSCNet-S 5.85 -1.84% 2.33
CSCNet-R 5.73 -3.86% 2.31

ARIMA 58.63 58.93% 30.05
ConvLSTM 44.31 20.11% 27.75
Peoridic-CRN 41.22 11.74% 27.88

MobileBJ ST-ResNet 42.19 14.37% 26.95
DeepSTN+ 36.89 0.00% 23.43

CSCNet-S 34.00 -7.83% 21.05
CSCNet-R 33.25 -9.87% 21.71

Table 2: Comparison of different baselines and variants of CSCNet
on new NYCTaxi and NYCBike data.

Datasets NYCBike NYCTaxi
Model RMSE ∆ RMSE RMSE ∆ RMSE

w/o
transition
flow

HA 15.11 34.67% 49.62 34.47%
ARIMA 14.56 29.77% 44.43 20.41%
ConvLSTM 11.57 3.12% 44.39 20.30%
ST-ResNet 11.60 3.39% 37.52 1.68%
DeepSTN+ 11.22 0.00% 36.90 0.00%

CSCNet-S 11.28 0.53% 37.30 1.08%
CSCNet-R 10.84 -3.39% 36.19 -1.92%

with
transition
flow

STDN 11.29 0.61% 36.70 -0.54%
MDL 10.85 -3.30% 35.89 -2.74%

CSCNet-RC 10.31 -8.11% 35.46 -3.90%
CSCNet-RTC 10.17 -9.36% 34.75 -5.83%
CSCNet-RTC+ 10.05 -10.43% 34.05 -7.72%

flow for efficient feature extraction. Finally, based on CSC-
Net-RTC, CSCNet-RTC+ uses the transition flow as the addi-
tional input of FRN and improves the performance again.

Hyper-parameter Study We conduct a hyper-parameter
study of several key components in our model on NYCBike
data to evaluate the effectiveness of them. The results on
NYCTaxi data is similar, and we omit it here due to the space
limitation. Fig. 10(a) presents the effects of the length of
the population flow, we observe that the performance of the
model is improved rapidly with the increase of length, where
the length reaches 8 is enough for competitive performance.
As Fig. 10(b) shows, only 1 conv in the fusion unit is good
enough to obtain the best performance. Fig. 10(c) presents the
effects of the number of fusion units in the periodical FRN.
If we only use a small number of fusion units (e.g., 6) by re-
peating them to construct the 24 fusion units in FRN, the per-
formance of our model is limited obviously, which represents
the importance of daily periodicity in population flow mod-
elling. Finally, we evaluate the effects of the spatial range of
truncated transition flow in FCN in Fig. 10(d), where spatial
range r = 0 means no transition flow data is used and spatial
range r = 1 means that we only consider the transition flow
in the eight directions. Based on Fig. 10(d), we observe the



utilization of transition flow can significantly reduce the pre-
diction error. Besides, we also notice that increase the spatial
range does not improve the performance again.

(a) Effects of the length history
records.

(b) Effects of the number of
convs in the fusion unit of FRN.

(c) Effects of the number of
reused fusion units in FRN.

(d) Effects of the spatial range
of transition flow in FCN.

Figure 10: Parameter study of CSCNet on NYCBike data.

5 Related Work
Various conventional algorithms [Fan et al., 2015; Xu et al.,
2016b; Xu et al., 2016a; Hoang et al., 2016; Xia et al., 2020]
were proposed to model the temporal variation with consid-
ering simple spatial correlation. With the success of deep
learning techniques [Wei et al., 2018; Feng et al., 2018b;
Feng et al., 2018a], it was applied to the population flow
prediction and became the de facto standard method in re-
cent three years. DeepSD [Wang et al., 2017] tried to com-
bine the techniques of external factor embedding, multiple
linear layers with residual connection to predict the order for
the region. DeepST [Zhang et al., 2016], ST-ResNet [Zhang
et al., 2017] proposed to utilize CNN to model the spatial
correlation between different regions in the city scale as im-
ages. Following their framework, DeepSTN+ [Lin et al.,
2019] proposed to model the long-range dependencies and
the semantic effects of region function. While previous works
succeeded in modeling the spatial correlation from the city
scale, they only construct manual temporal feature in the in-
put. DMVST [Yao et al., 2018] and Meta-ST [Yao et al.,
2019a] utilized shallow CNN as the local spatial feature ex-
tractor for the target region and then made use of LSTM to
model the temporal variations of it.

Furthermore, RegionTrans [Wang et al., 2019] and
Periodic-CRN [Zonoozi et al., 2018] proposed to utilize Con-
vLSTM [Shi et al., 2015] and its variants to model the spatial-
temporal feature simultaneously. Different from ConvLSTM,
which extends LSTM by integrating convolutional operation
to it for capturing both spatial and temporal information, we

propose a new paradigm of simultaneously spatial-temporal
modelling by only using the convolutional structure with pro-
gressively merging features from different time in different
convolution layer. In this way, going deeper with convolu-
tion [Szegedy et al., 2015] in our model is not only for better
spatial feature extraction but also for progressively merging
the temporal feature.

Recently, researchers [Zhang et al., 2019; Yao et al.,
2019b; Yu et al., 2018; Li et al., 2017; Geng et al., 2019]
proposed to utilize auxiliary information to model the com-
plicated correlation between different regions. Some [Yu et
al., 2018; Li et al., 2017; Geng et al., 2019] constructed this
correlation by applying graph convolution neural network on
the static road network. Furthermore, MDL [Zhang et al.,
2019] and STDN [Yao et al., 2019b] were proposed to make
use of the dynamic population transition flow data to model
the flexible and dynamic spatial correlations and achieves the
state-of-the-art performance.

Compared with existing works, we propose CNN based
sequential network to simultaneously model the spatial-
temporal features, which enhance the sequential modelling
capacity of CNN while preserving the advantages of global
spatial modeling and parallel computing. Further, we pro-
pose to simplify and predict the transition flow with minimal
direction information and design feature cross network by ex-
plicitly using this information to reorganize the original flow
feature to capture the dynamic correlation between regions.

6 Conclusion
In this paper, we investigate the population flow prediction
problem. We propose CSCNet with FRN to simultaneously
model the spatial-temporal feature and FCN to explicitly cap-
ture the correlations between different types of population
flows. We evaluate our model on four real-life datasets,
which shows that our model outperforms all the state-of-the-
art baselines significantly. In the future, we will consider
more flexible geometric models like graph neural networks
to extend the application scenario of the proposed methods.
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