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Abstract—Human mobility prediction is of great importance for a wide spectrum of location-based applications. However, predicting
mobility is not trivial because of four challenges: 1) the complex sequential transition regularities exhibited with time-dependent and
high-order nature; 2) the multi-level periodicity of human mobility; 3) the heterogeneity and sparsity of the collected trajectory data; and
4) the complicated semantic motivation behind the mobility. In this paper, we propose DeepMove, an attentional recurrent network for
mobility prediction from lengthy and sparse trajectories. In DeepMove, we first design a multi-modal embedding recurrent neural
network to capture the complicated sequential transitions by jointly embedding the multiple factors that govern human mobility. Then,
we propose a historical attention model with two mechanisms to capture the multi-level periodicity in a principle way, which effectively
utilizes the periodicity nature to augment the recurrent neural network for mobility prediction. Furthermore, we design a context adaptor
to capture the semantic effects of Point-Of-Interest (POI)-based activity and temporal factor (e.g., dwell time). Finally, we use the
multi-task framework to encourage the model to learn comprehensive motivations with mobility by introducing the task of the next
activity type prediction and the next check-in time prediction. We perform experiments on four representative real-life mobility datasets,
and extensive evaluation results demonstrate that our model outperforms the state-of-the-art models by more than 10%. Moreover,
compared with the state-of-the-art neural network models, DeepMove provides intuitive explanations into the prediction and sheds light
on interpretable mobility prediction.
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1 INTRODUCTION

Human mobility prediction is of great importance in a wide
spectrum of applications, ranging from smart transportation
and urban planning, to resource management in mobile
communications, personalized recommender systems, and
mobile healthcare services. By predicting the future loca-
tions people tend to visit, governments can design better
transportation planning and scheduling strategies to alle-
viate traffic jams and handle crowd aggregations. Ride-
sharing platforms like Uber and Didi also heavily rely on
accurate mobility prediction techniques, for better estimat-
ing the travel demands of their customers and schedul-
ing resources to meet such demands accordingly. With the
proliferation of such mobile applications, it has become a
pressing need to understand the mobility patterns of people
from their historical traces and foresee their future where-
abouts. With sensing user’s future movement in advance,
the telecom operators can do better resource arrangement
and guarantee the high quality of service with minimal
costing.

By measuring the entropy of an individual’s trajectory,
Song et al. [1] find remarkable stability in the predictability
of human mobility — 93% human movements are pre-
dictable according to their study on a million-scale user
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base. So far, lots of research efforts [1, 2, 3, 4, 5, 6, 7] have
been taken to turn this identified predictability into actual
mobility prediction models. Early methods for mobility pre-
diction are mostly pattern-based [8, 9, 10, 11, 12]. They first
discover pre-defined mobility patterns (e.g., sequential pat-
terns, periodic patterns) from the trajectory traces, and then
predict future locations based on these extracted patterns.
Such methods, however, not only suffer from the one-sided
nature of the pre-defined patterns but also ignore personal
preferences that are critical for mobility prediction. More
recent developments turn to model-based methods [2, 3, 13]
for mobility prediction. They leverage sequential statistical
models, e.g., Markov chain or recurrent neural networks
(RNN), to capture the transition regularities of human
movements and learn the model parameters from the given
training corpus.

Despite the inspiring results of model-based mobility
prediction, several key challenges that remain to be solved
to realize the high potential predictability of human move-
ments: (1) First, human mobility exhibits complex sequential
transition regularities. In practice, the transitions between two
arbitrary locations can be time-dependent and high-order.
For instance, the probability of moving from home to office
for a commuter is higher in workday mornings but often
low in weekend mornings. Meanwhile, the transition may
not follow the simple and exact Markov chain assumption,
as people can go to different places (e.g., breakfast places) in
their commute routes, which lead to high-order and irreg-
ular transition patterns. (2) Second, there is often multi-level
periodicity that governs human mobility. Periodicity has been
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demonstrated as an important factor that governs human
movements [14, 15]. However, existing mobility prediction
models are mostly sequential models that only capture
the transitional regularities. Further, mobility periodicity
is often complex and multi-level, involving daily routines,
weekend leisure, yearly festivals, and even other personal
periodic activities. All these periodic activities interweave
with each other in complex ways and are difficult to be
captured. (3) The third challenge is heterogeneity and sparsity
in the data recording human mobility. Unlike intention-
ally collected tracking data like taxi trajectories, most data
recording human mobility is low-sampling in nature, and
the location information is recorded only when the user
accesses the location service. Such sparsity makes it difficult
for training a mobility model for each individual. Aggre-
gating the data of all users, on the other hand, may face
the problem of mixing personalized mobility patterns and
suffer from low prediction accuracy. (4) The fourth challenge
is how to capture the complicated semantic motivation behind
mobility. Human mobility does not only follow the simple
physical law like continuity but also is influenced by the
underlying motivation of related human activities. Without
considering the motivation of human mobility and the se-
mantic meaning of locations, the performance of mobility
modelling will be limited.

In this paper, we propose DeepMove, an attentional
recurrent neural network model for predicting human mo-
bility from lengthy and sparse trajectories. In DeepMove, we
utilize a multi-modal recurrent neural network to capture
the multiple factors that govern the transition regularities of
human movements. Specifically, we design a multi-modal
embedding module that converts discrete features (e.g., time
of day, location, user ID) of a raw location record into dense
representations, which are then fed into a recurrent neural
network to model long-range and complex dependencies in
a trajectory sequence. DeepMove is capable of discovering
the transitional regularities that are shared by all the users,
while is also be able to capture personalized movement
preferences by flexibly leveraging user embeddings or user
identification task. Another key component in DeepMove
is a historical attention module, which captures the multi-
level periodicity of human mobility in a principled way. The
attention component is jointly trained to select historical
records that are highly correlated with the current predic-
tion timestamp. It thus flexibly utilizes periodic movement
regularities to augment the recurrent neural network and
improve prediction accuracy. Meanwhile, the learned atten-
tion weights offer an easy-to-interpret way to understand
which historical activities are emphasized in the prediction
process. Besides, we design a context adaptor to model the
semantic effects of POI label, user text, and dwell time of
the current location. Furthermore, we introduce two other
additional tasks: the task of the next activity type prediction
and the next check-in time prediction to cooperate with
the original next location prediction task. With the help of
context adaptor and multi-task learning, the new enhanced
model is encouraged to better model the mobility pattern
by observing the underlying semantic motivation of human
movement.

Our contributions can be summarized as follows:

• We propose an attentional recurrent model, Deep-
Move, to predict human mobility from long-range
and sparse trajectories. Our model combines two
regularities in a principled way: heterogeneous tran-
sition regularity and multi-level periodicity. To the
best of our knowledge, DeepMove is the first model
that simultaneously combines these two important
regularities for accurate mobility prediction.

• We design two attention mechanisms that are tai-
lored to cooperate with the recurrent module. The
first is to directly embed historical records into in-
dependent latent vectors and use the current sta-
tus to selectively focus on relevant historical steps;
while the second preserves the sequential informa-
tion among historical records. Both unveil the pe-
riodicity of human mobility by matching historical
records with the current status and rationalize the
prediction making process.

• We design a context adaptor with the multi-task
prediction framework to achieve better prediction
performance by capturing the semantic motivation
of human mobility. One the one hand, the context
adaptor is utilized to model the semantic effects of
PoI label, dwell time, and user text of the current
location. On the other hand, our model is designed
to predict the next activity type and the next visiting
time while predicting the next location to better
capture the semantic motivation of human mobility.

• We perform extensive experiments on four represen-
tative real-life mobility datasets. Our results demon-
strate that DeepMove outperforms state-of-the-art
mobility prediction models by more than 10%. Deep-
Move shows outstanding generalization ability and
is robust across trajectory datasets that have different
natures. Furthermore, compared with existing RNN
models, DeepMove provides intuitive explanations
into the prediction and sheds light on interpretable
mobility prediction.

Compared with the original conference version [16], we
extend this work from two aspects. First of all, we introduce
two new designs to improve the prediction performance by
modelling the semantic motivation of human mobility. On
the one hand, we design a new context adaptor to capture
the semantic effects of activity, user text, and dwell time
of the current location. On the other hand, we introduce
the task of next activity type prediction and next visiting
time prediction to cooperate with the original next location
prediction task to learn the comprehensive pattern of human
mobility. Compared with the original DeepMove, the en-
hanced DeepMove improves the Top1 prediction accuracy
by more than 11% on two check-in datasets. Secondly, we
also extend the experimental results from two dimensions to
help readers to better understand our models. We add a new
public available data and two new baselines to evaluate the
performance of the proposed model. Besides, we study the
effects of different hyper-parameters (including the weights
of multi-task) and also analyze the necessity of location
embedding in location prediction task. The results give more
insights on the effectiveness and limitation of proposed
models, which shed light on the future direction.
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The rest of this paper is organized as follows. We first for-
mulate the problem and discuss the motivation of our work
in Section 2. Following the motivation, we introduce details
of the architecture of DeepMove in Section 3. After that,
we apply our model on three real-world mobility datasets
and conduct an extensive analysis of the performance in
Section 4. After systematically reviewing the related works
in Section 5, we finally conclude our paper in Section 6.

2 PRELIMINARIES
In this section, we first formally formulate the mobility
prediction problem, and then briefly introduce the recurrent
neural networks. Finally, we discuss the motivation and the
overview of our solution. In general, the time of collected
mobility trajectory data for each person can be more than
one month even year, the lengthy mobility records are not
trivial for any machine learning model to handle. Besides,
due to the regularity of human mobility [1, 6], the lengthy
mobility data can be naturally divided into segments [3],
where each segment represents a meaningful and complete
mobility behavior sequence. Based on these intuitions, we
introduce the definition of trajectory.

2.1 Problem Formulation

Definition 1 (Trajectory Sequence). Spatiotemporal point q
is a tuple of timestamp t and location identification l,
i.e., q = (t, l). Given a user identification u, trajectory
sequence S is a spatiotemporal point sequence, i.e., Su =
q1q2...qn.

Furthermore, we enrich the spatiotemporal point q with
the semantic information e to enable the understanding of
the context of human mobility. Following the practice in
previous work [3, 17], we utilize the widely-used Point-Of-
Interest (POI) data as basic semantic label e in our trajectory
points q = (t, l, e). POI (e.g., shops, restaurants, and muse-
ums) of a location describes the common interests of people
when visiting the location and it can be regarded as the most
straightforward and available proxy of the context of human
mobility. It is also noted that the proposed framework for
mobility prediction with semantic motivation modelling can
be easily extended into any semantic labels obtained from
other complicated semantics mining methods [17].
Definition 2 (Trajectory). Given a trajectory sequence Su

and a time window tw, a trajectory is a subsequence
Su
tw = qiqi+1..qi+k of Su in the time window tw, if ∀

1 < j 6 k, tqj belongs to tw.

At the m-th time window twm , the current trajectory of user
u can be defined as Su

twm
and the trajectory history can be

denoted as Su
tw1
Su
tw2
...Su

twm−1
, where tw can be one specific

day, one week or even one month in the year.
Problem 1 (Next Location Prediction). Given the current tra-

jectory Su
twm

= q1q2..qn and the corresponding trajectory
history Su

tw1
Su
tw2
...Su

twm−1
, next location prediction task

can be defined to predict the next location point ln+1 in
the trajectory.

Coupling with the next location prediction task, we define two
other tasks as follows. With the same input and condition

with next location prediction task, the task of next activity
type prediction is to predict the semantic label en+1 of next
location ln+1 and the task of next visiting time prediction is to
predict the visiting time tn+1 of the next location ln+1. Fi-
nally, the problem of multi-task based mobility prediction is
defined as the combination of three mentioned tasks to pre-
dict the next-hop mobility event qn+1 = (ln+1, tn+1, en+1)
by knowing the mobility history.

2.2 Recurrent Neural Network

Recurrent Neural Networks (RNN) [18] is a class of neural
networks with cycle and internal memory units to capture
sequential information. Long short-term memory (LSTM)
[19] and gated recurrent unit (GRU) [20] are widely used
recurrent units. LSTM consists of one cell state and three
controlled gates to keep and update the cell state. Based on
the input and last cell state, LSTM first updates the cell state
with parts to keep and parts to drop. Then, LSTM generates
the output from the cell state with a learnable weight. The
updating formulation of LSTM is as follows:

it = σ(Wixxt +Wihht−1 + bi), (1)
ft = σ(Wfxxt +Wfhht−1 + bf ), (2)
ot = σ(Woxxt +Wohht−1 + bo), (3)
gt = tanh(Wgxxt +Wghht−1 + bg), (4)
ct = ft ∗ ct−1 + it ∗ gt, (5)
ht = ot ∗ tanh(ct), (6)

where ∗ denotes the element-wise multiplication, xt, ht, ct
denote the input, hidden state, and cell state, respectively,
it, ft, ot denote three types gates, and gt denotes the useful
information from the input.

GRU is a popular variant of LSTM which replaces the
forget gate and the input gate with only one update gate.
The updating formulations of GRU are as follows,

ft = σ(Wfxxt +Wfhht−1 + bf ), (7)
rt = σ(Wrxxt +Wrhht−1 + br), (8)
ct = tanh(Wcxxt + rt ∗ (Wchht−1) + bc), (9)
ht = (1− ft) ∗ ct + ft ∗ ht−1, (10)

where xt is the input in time t, ht−1 is the last output of
GRU unit, multiple matrix W are different gate parameters,
multiple vectors b are the bias vectors for different parts, ft
is the update weight, rt is the reset gates, ct is the candidate
and ht is the output result. According to Chung et al. [20],
GRU achieves similar performance in multiple tasks with
less computation, which is used as the basic recurrent unit
in our proposed model.

2.3 Overview

As a powerful sequence modeling tool, recurrent neural
networks can capture long-range dependencies of sequen-
tial information. However, when the sequence is too long,
i.e., a long sentence with more than 20 words, its perfor-
mance will degrade rapidly [21]. According to the typical
mobility datasets, the average length of one day’s trajectory
for mobile application data varies from 20 to 100, which
obviously exceeds the processing ability of recurrent neural
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Fig. 1: Performance varies with trajectory length.
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Fig. 2: Motivation and intuition of our solution.

networks. Figure 1 plots the prediction accuracy obtained
by a simple recurrent neural network. It shows that the
prediction accuracy varies significantly with the testing tra-
jectory. The longer the time extends, the worse performance
the prediction achieves. Thus, with the recurrent neural
networks, we can only process a limited length trajectory
with a short duration of one day or even shorter.

Directly applying the recurrent neural networks to solve
the mobility prediction problem is intuitive but inefficient.
Except for the long-term nature mentioned above, some
other challenges also make it failed. The first is the multi-
level periodicity of human mobility. Generally, there exist
several periodicities in human activities: day, week, month,
and even other personal periodicities, and thus the multi-
level periodicity becomes a universe pattern that governs
human mobility. However, the general recurrent neural
networks can do little to handle this because of the long-
term effect and the complicated influencing factors from
the trajectory. Besides, because users will not report their
activities in every location (unlike uniform sampling traces
of taxi [22]), most collected mobility data is sparse and
incomplete, which cannot record the periodical nature of hu-
man mobility. In general, the data quality problem degrades
performance in two ways. The first one is that the missing
data will puzzle the recurrent neural network, and induce
it to learn the wrong transition information. The other one
is that the sparse data makes it difficult to train models for
every individual. Even for capturing the transition relations,
recurrent neural networks face the problem of the time-
dependent and high-order nature of human mobility. In
conclusion, the recurrent neural network faces the problem
of periodicity, data sparsity, and complicated transitions,
which prevent it to achieve high prediction accuracy for

human mobility.
Based on the above observations, we propose Deep-

Move, an attentional recurrent neural network for predict-
ing human mobility from the lengthy, periodical, and in-
complete trajectories. Figure 2 presents the intuition behind
our solution: not only the sequential information from the
current activities decides the next mobility status but also
the periodical information from the trajectory history takes
effects. In DeepMove, we first involve a multi-modal recur-
rent neural network to capture the complicated transition
relationship. In the multi-modal recurrent neural network,
we design a multi-modal embedding module to convert the
discrete features (e.g., user ID, location, time of day) into
dense representations, which are more expressing and com-
putable. Then, they are jointly fed into a recurrent neural
network to capture the complicated transition relationship.
With the help of user embedding, DeepMove can distin-
guish every user and learn the personal preference while
training a single model for all users to learn and share sim-
ilar mobility regularities. Besides, the time representation
involved in the embedding gives recurrent neural network
the ability to model the time-dependent nature.

Another key component of DeepMove is the historical
attention module, which is designed to capture the multi-
level periodical nature of human mobility by jointly select-
ing the most related historical trajectories under the current
mobility status. The historical attention module first extracts
spatiotemporal features from the historical trajectories by an
extractor. Then, these features are selected by the current
mobility status based on the spatiotemporal relations to
generate the most related context. By combining this con-
text with the current mobility status, we could predict the
mobility based on not only the sequential relation but also
the multi-level periodical regularity.

To model the semantic motivation behind the mobility,
we enhance the original DeepMove by a context adaptor
and the multi-task learning techniques. On the one hand,
we design a context adaptor to model the semantic effects
of POI label, user text, and dwell time of the current location.
In the context adaptor, parts of the mentioned discrete
semantic features are fed into the multi-modal embedding
layer to obtain the comprehensive representation of location
record while the temporal feature is utilized to filter and
fine-tune the hidden state vector before the output layer. On
the other hand, we introduce multi-task learning techniques
by introducing the task of the next activity type prediction
and the next visiting time prediction to cooperate with
the original next location prediction task. With the help of
two additional tasks and context adaptor, our model can
achieve better prediction performance by understanding the
semantic motivation behind the mobility.

3 THE DESIGN OF DEEPMOVE

Figure 3 presents the architecture of DeepMove, which
consists of three major components: 1) feature extracting
and embedding module; 2) recurrent module and historical
attention modules; and 3) context adaptor and multi-task
prediction output layer. Details of the three components are
introduced as follows.
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Fig. 3: The main architecture of DeepMove, which contains three major parts: 1) multi-modal embedding module for raw
feature extracting; 2) recurrent module and historical attention module for sequential modelling; 3) context adaptor and
multi-task prediction output for semantic modelling.

3.1 Feature Extracting and Embedding Module

The trajectories are partitioned into two parts: current tra-
jectory and historical trajectory. The current trajectory is
processed by the recurrent layer to model the complicated
sequential information. The trajectory history is handled by
the historical attention module to extract the regularity of
mobility. Before that, all the trajectories are first embedded
by the multi-modal embedding module. Simple models like
Markov chains can only describe the transitions between
independent states like locations. However, mobility transi-
tions are governed by multiple factors like time of day and
user preference. Thus, we design a multi-modal embedding
module to jointly embed the spatiotemporal features and
personal features into dense representations to help model
the complicated transitions. In practice, all the available
features of one trajectory point including time t, location
l, user ID u can be numbered. Then, the numbered features
are translated into one-hot vectors and input to the multi-
modal embedding module. The ID number of any new user,
which does not appeared in the training set, is fixed as 0.
We formulate the multi-modal embedding layer as follows,

xi = tanh([Wtti + bt;Wlli + bl;Weei + be]), (11)

where W and b denote the learnable parameters of different
embedding layers, tanh denotes the non-linear activation
function, [; ; ] denotes the concatenate function, i denotes
the ith record in the trajectory sequence.

It is noted that we represent the location in the input
by a one-hot vector, which is general for the discrete loca-
tions in many real-world applications (e.g, cellular network
localization and the obfuscation of location for privacy con-
cern). Furthermore, we argue that the learnable embedding
vector after one-hot representation is also able to learn the
most important adjacent information stored in the original
coordinate format. For location representation, we introduce
an independent location embedding module to map one-
hot location into a dense vector in a latent space, where the
projected dense location representation is close to each other
if their original physical location is close. Due to the regu-
larity and consistency of mobility, two points close in the
time dimension may also be close in the spatial dimension.

Further, with the help of recurrent networks in the following
step, the location embedding module is enforced to embed
the adjacent location in the physical world into the adjacent
space in the latent high-dimensional space in the neural net-
work. In this way, our location embedding module succeeds
in modeling the spatial correlation. Besides, if coordinates
information of location is available, we can also consider it
as the additional features of locations in the model with a
linear network.

3.2 Recurrent Module and Historical Attention
3.2.1 Overview of Sequential Modelling
The recurrent module aims to capture the complicated se-
quential information or long-range dependencies contained
in the current trajectory. Following the detailed design in-
troduced in Section 2.2, the recurrent layer takes the spa-
tiotemporal vector sequence embedded by the multi-modal
embedding layer as input and outputs the hidden state step
by step. The formulation of the recurrent layer is as follows,

[h1, h2, ..., hn] = LSTM([x1, x2, ..., xn]), (12)

where h represents the output state of the recurrent neural
networks (e.g., LSTM), x denotes the output of the multi-
modal embedding layer, n denotes the length of the current
trajectory. These output states [h1, h2, ..., hn] are called as
the current status of the mobility. Paralleled with the re-
current module is the historical attention module, which is
designed to capture mobility regularity from the lengthy
historical records. It takes the historical trajectory as the
input and outputs the most related context vector when
queried by a query vector from the recurrent module. The
abstract formulation of historical attention is as follows,

hsi = HisAttn(hi, [s1, s2, ..., sm]), (13)

where HisAttn denotes the historical attention module, hi is
the output hidden state of the recurrent neural network, si
denotes the embedding vector of ith records in the historical
trajectory, m denotes the length of the historical trajectory.

To capture the multi-level periodicity of human mobility,
we need an auto-selector to choose the most related histor-
ical records of current mobility status from the trajectory
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Fig. 4: Architecture of the historical attention module.

history as the periodicity representation. Inspired by the
human visual attention nature and the attention mechanism
widely used in natural language translation [21], we design
a historical attention module to implement the auto-selector.
As Figure 3 presents, it is comprised of two components: 1)
an attention candidate generator to generate the candidates,
which are exactly the regularities of the mobility; 2) an atten-
tion selector to match the candidate vectors with the query
vector, i.e., the current mobility status. We first introduce the
basic formulation of the attention module and then discuss
two specific candidate generation mechanisms.

3.2.2 Attention Selector
The goal of the attention module is to calculate the similarity
between the query vector (i.e., the current mobility status)
and the candidate vectors to generate the context vector. The
attention module is parameterized as a feed-forward neural
network that can be trained with the whole neural network.
There are three widely used attention methods: dot, general,
mlp. The main difference between these attention implemen-
tations is the calculation of “correlation”. The formulation of
typical attention methods are as follows,

ct =
∑

αisi, (14)

αi = σ(f(ht, si)), (15)

fdot(ht, s) = hTt s, (16)

fgen(ht, s) = hTt Ws, (17)

fmlp(ht, s) = vT tanh(Ws+ Uht), (18)

where s represents the historical features, W is the learnable
parameters, ht is the query vector which denotes current
mobility status from the recurrent layer, f represents the
score function, σ is the soft-max function and ct is the
context output representing the periodicity related to the
current mobility status. While there are many other varia-
tions of attention models [23], we choose the original one
for its simplicity and general expressions.

3.2.3 Attention Candidate Generator
To provide the candidate vectors s for the attention selector,
we discuss two specific generation mechanisms.

Embedding Encode Module The first is the embed-
ding encode mechanism, whose implementation structure
is presented in Figure 4(b). The embedding encodes mod-
ule directly embeds the historical records into independent
latent vectors as the candidate vectors. It is composed of
three components: 1) a shaping layer for disorganizing
the ordered trajectory sequence into a history matrix with
fixed-length temporal dimension and variable-length spatial
dimension; 2) a sampling layer for the location and POI
sampling; 3) fully connected layers. The shaping layer is
a fixed layer, whose structure and parameters are manually
assigned. In this layer, we reorganize the trajectory vectors
into a two-dimension matrix (for the convenience of dis-
cussion, we omit the embedding dimension logically for the
time being). In the temporal dimension, we align all the time
of trajectory into one week or two days, which is designed
to simulate the periodical nature of human mobility. In the
spatial dimension, we collect all the locations that appeared
in the same time to keep a visited location set for every time
slot.

Following the shaping layer is a sampling layer that
is designed to sample location from the visited location
set in every time slot. We design three kinds of sampling
strategies: 1) average sampling; 2) maximum sampling; 3)
none sampling. The average sampling strategy adds up all
the location embedding vectors in the set at every time
slot and calculates the mean value as their representation.
In this way, all the historical information can be reserved.
The maximum sampling strategy is based on the periodical
assumption of human mobility: the most frequently visited
location means a lot to the user. It works by selecting the
most frequent location embedding vector as the represen-
tation for every time slot. The none sampling strategy is to
reserve all the location and flatten them along the temporal
dimension without any processing. In the last of the paper,
the sampling layer with the average sampling strategy is
the default settings for the embedding encode mechanism.
The final fully connected layers further process the historical
spatiotemporal vectors into the appropriate shape.

Sequential Encode Module The second mechanism is
the sequential encode mechanism, whose implementation
structure is presented in Figure 4(c). The sequential encode
module takes the historical records as input and keeps the
intermediate outputs of every step as the candidate vectors
s. Working like the recurrent module introduced before, the
formulation of sequential encode module is as follows,

[s1, s2, ..., sm] = GRU([xs1, x
s
2, ..., x

s
m]), (19)

where xsi denotes the embedding vector of ith record in the
historical trajectory, m is the length of the historical trajec-
tory, si denotes the ith historical candidates for attention
selection. Different from the embedding encode module,
it does not directly simulate the periodicity and reserves
all the spatiotemporal information. Based on the multi-
modal embedding method mentioned above, the recurrent
neural network can extract complex sequential information
from the historical records. Compared with the embedding
encode module, the sequential encode module relies on
the follow-up attention selector to capture the periodical
information. Besides, the sequential encode module projects
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the historical records into a latent space which is similar to
the current mobility status in. This similar projection result
also benefits the follow-up attentional selection.

3.3 Context Adaptor and Multi-task Prediction
To better understand and predict the human mobility by
capturing the semantic motivation of human mobility, we
first introduce a context adaptor to model the semantic
effects of the current location and then utilize the multi-task
design to learn the semantic motivation behind the future
mobility.

3.3.1 Context Adaptor

Fig. 5: Architecture of context adaptor.

While aforementioned multi-modal embedding has con-
sidered the basic discrete features of the spatiotemporal
point including location l, time t, and user u, it fails to
capture the semantic effects of the current location. Thus, as
Figure 5 shows, we design a context adaptor to model the
semantic effects of location like the effects of its POI label,
user text, and dwell time. For the discrete POI label, we use
a discrete one-hot vector as its representation and design
a trainable embedding layer to obtain its dense feature.
For user text information, we use the pretrained Glove
embeddings [24] to convert the sentence into dense vectors
and apply the mean-pooling operation to obtain the final
fixed-length representation of user text. After concating the
dense features from POI label and user text into one vector,
we feed it into the multi-modal embedding layer to enrich
the representation of the location.

Furthermore, we consider the effects of dwell time of
current location. While dwell time is not directly available
in the data, we simply estimate it by two steps: 1) calculating
the time interval between the current location and the last
location; 2) reshaping the time interval by the reasonable
assumptions of human activity like it should be smaller than
12 hours in most cases. Based on the estimating dwell time
tdw, we design an embedding layer to convert it into dense
vector tdwe. As Figure 5 shows, we design a feature cross
layer to fuse the dwell time vector with the original hidden
state vector hi, which works like the residual connection
manner. We first use dwell time vector tdwe to filter the
original hidden state hi by the element-wise multiplication

operation. Then, we add this new vector with the original
hidden state hi as the new representation hci of the hidden
state. The formulation of mentioned operation is as follows,

hci = hi + hi ∗ tanh(Wtt
dw
i + bt), (20)

where hi denotes the ith hidden state output of the re-
current module, tdwi denotes the estimated dwell time of
ith location, Wt and bt denote the learnable embedding
parameters of dwell time embedding layer. Compared with
the trainable location embedding table (e.g., 10000x128), the
POI type embedding (e.g., 10x128) and dwell time (e.g.,
48x128) embedding only introduce limited parameters. The
text embedding is introduced based on the pre-trained
Glove embedding table, which is fixed during the training.

3.3.2 Multi-task Prediction Output
As mentioned in Section 2.1, we formulate the mobility
prediction task into three sub-tasks to conduct a multi-
task learning process for better predicting human mobility
with semantic motivation. Based on the aforementioned
components, the comprehensive representation of current
mobility state hci before the output layer is formulated as
follows,

hci = hi + hi ∗ hsi + hi ∗ tdwe
i , (21)

where hi denotes the ith output of the recurrent module
for the current trajectory, hsi denotes the output of historical
attention module, tdwe

i denotes the dwell time embedding
from context adaptor. This formulation is an extension of
the feature cross layer in formula( 20) by combining three
kinds of outputs from the recurrent module, historical at-
tention module, and context adaptor. With a comprehensive
representation of current mobility state hci as input, we
design three independent fully connected layers with soft-
max function to project it into different targets to complete
different tasks simultaneously. The formulation of multi-
task prediction output is as follows,

li+1 = argmax(softmax(Wlh
c
i + bl)), (22)

ti+1 = argmax(softmax(Wth
c
i + bt)), (23)

ei+1 = argmax(softmax(Weh
c
i + be)), (24)

whereW and b denote the learnable parameters of the linear
layer. It is noted that due to the actual activity type is not
available in the data, we regard the POI label of next location
as the proxy label for activity type.

3.4 Training Algorithm

Algorithm 1 outlines the training process of DeepMove. As
a multi-task learning problem, the final loss function is as
follows,

L = Llocation + αLtime + βLactivity, (25)

where α and β are the hyper-parameters for balancing the
contributions of different tasks during joint training, the loss
function of each task is the cross-entropy loss. We use Adam
optimizer [25] to train the whole network. The historical
attention module is parameterized to a feed-forward neural
network that can be jointly trained with the whole model.
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Algorithm 1: Training algorithm for DeepMove

1 Input: Time window: tw;
2 Trajectory: {Su1 , Su2 , ..., Sun}.
3 Output: Trained ModelM.
4 //construct training instances
5 D ←− ∅
6 for u ∈ {u1, ..., un} do
7 for m ∈ {1, 2, ...,M} do
8 Su

c = Su
twm

; Su
h = Su

tw1
Su
tw2
...Su

twm−1

9 put a training instance (u,m, Su
c , S

u
h) into D

10 initialize the parameters θ
11 for i ∈ {1, 2, ..., EPOCH} do
12 select instance Du

m with m in order for user u
from D

13 update θ by minimizing the objective with Du
m

14 stop training when criteria is met

15 output trained modelM

4 PERFORMANCE EVALUATION

4.1 Datasets

We collect three representative real-life mobility datasets to
evaluate the performance of our proposed model. The first
one is the public Foursquare check-in data, the second one
is a mobile application location data from a popular social
network vendor, and the last one is call detail records (CDR)
data from a major cellular network operator. The generation
mechanism of trajectory records of three data is different,
which represent three main location generation mechanisms
in reality.

• Call detail records data with location records gener-
ates in the base station of the cellular network when
users access it for communication and data accessing.

• Mobile application data with location records gen-
erates in the application servers when users request
location service in the application like search, check-
in, and so on.

• In Foursquare, users always intentionally publish
their location information to share with other friends
and the public, which is the check-in location.

Besides, three datasets are collected among three differ-
ent cities during a different time. All of these features ensure
the representativeness of our data. The basic information
of three mobility datasets is presented in Table 4.1. Figure
6 shows the spatiotemporal features of the three mobility
data. The details about the datasets and basic preprocessing
procedure are discussed as follows.

Foursquare-NYC: This data is collected from Foursquare
API from Feb. 2010 to Jan. 2011 in New York. Every record in
the data consists of user ID, timestamp, GPS location, POI
ID, and related text. Further, we follow the official venue
category from Foursquare 1 to category different POI into
different groups.

Foursquare-TKY [26]: This dataset includes long-term
(about 10 months) check-in data in Tokyo collected from

1. https://developer.foursquare.com/docs/resources/categories
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Fig. 6: Spatiotemporal features of mobility datasets.

Foursquare from 12 April 2012 to 16 February 2013. It
contains an anonymized user ID, venue ID, venue category,
GPS location, and timestamp.

Mobile Application Data: This data is collected from
the most popular social network vendor in China. It records
the location of users whenever they request the localization
service in the applications. The data is collected from 17
Nov. 2016 to 31 Oct. 2016. The localization of the records is
mainly achieved by GPS modules on the mobile phone and
enhanced by other possible sensors. For the convenience of
representation and computation, the GPS location is pro-
jected into third level street blocks (31522 blocks in Beijing),
which can be represented as a street block ID.

Call Detail Records Data: This data is collected from
one major cellular network operator in China. It records the
spatiotemporal information of users when they access the
cellular networks (i.e., making phone calls, sending short
messages, or consuming data plan). The data is collected
from 1 Jan. 2016 to 31 Jan. 2016. It contains more than 17000
base stations around the city.

Preprocessing: While Foursquare check-in data is sparse,
we filter out the users with less than 10 records and then
cut the left trajectories into several sessions based on the
interval between two neighbor records. Further, we filter
out the sessions with less than 5 records and the users
with less than 5 sessions. Here, we choose 72 hours as the
default interval threshold based on the empirical experi-
ence. Different from the sparse Foursquare check-in data,
mobile application data and call detail records data are both
dense daily mobility data [27, 28]. To obtain a meaningful
trajectory from them, we first split the whole trajectory into
different sessions by the date. Further, we split one day into
48 pieces and aggregate the records in the same time slot
into one record. In practice, because of the duplication of
the raw mobility data, we filter out these records during the
same period of time.

To protect the privacy of the users, the base station ID,
the street block ID and the user ID are all anonymous. Mean-
while, we want to point out that only the core researchers
can access the data with strict non-disclosure agreements.
Besides, all the data are stored in a secure local server. After
processing data without leaking user privacy, we will open
and publish these datasets and codes for the community.

4.2 Experimental Setup
To evaluate the accuracy of our predictive model, we com-
pared the proposed model with several most updated meth-
ods:

Markov is widely used to predict human prediction [2,
13] for a long time. They regard all the visited locations as
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Dataset City Duration Users Records Locations Rec./User Loc./User

Foursquare-NYC New York 1 year 886 82571 10497 93 33
Foursquare-TKY Tokyo 10 months 2108 537703 21390 255 40

Mobile Application Beijing 1 month 2407 15007511 31522 3000 48
Cellular Network Shanghai 1 month 1075 491077 17785 456 40

TABLE 1: Basic statistics of mobility datasets.

states and build a transition matrix to capture the first-order
transition probabilities between them.

PMM [14], which is recently proposed, assumes that
mobility location follows a spatiotemporal mixture model
and predicts the next locations with periodicity into consid-
eration.

FPMC [29] Factorizing personalized Markov chains
(FPMC) is the combination of matrix factorization and
Markov chains. Further, S-BPR (Sequential Bayesian Person-
alized Ranking) is used in the training process of FPMC.

Geo-teaser [7] is a combination model of temporal POI
embedding model for capturing the dynamic contextual
information of location and geographically hierarchical pair-
wise preference ranking model for capturing the geograph-
ical influence.

SimpleRNN [5, 18] can be regarded as a simplification
version of our model without the historical attention mod-
ule, which uses LSTM as the default recurrent network unit.
In the experiments of cellular network data and mobile
application data, RNN-Short means that the trajectory is fed
into the model day by day, while RNN-Long means that the
whole trajectory lasting one month is directly fed into the
model.

Parameter settings. The experiments are conducted in
terms of test-train mode, where the first 80% of each users’
trajectory is selected as training data, the remaining 20% as
testing data. For our method, the parameters are divided
into two groups: parameters for optimizer (e.g., learning
rate, weight decay, gradient clipping, and L2 penalty) and
parameters for the model (e.g., embedding size for location,
time, user, POI and dwell time, the size of the hidden state).
We define search space for each parameter and use the
grid search method to find the best values of them. We use
the similar approach to find the best parameter groups for
neural network based methods (e.g., RNN and Geo-teaser).
For other baselines, we also use the grid search method to
find the best settings for their crucial parameters.

4.3 Overall Performance

We evaluate our model with the baseline methods on four
mobility datasets to present the performance of our model.
We rank the candidate locations by the probabilities gener-
ated from the model and check whether the ground-truth
location appears in the top-k candidate locations. While the
semantic information like POI label and user text is not
available in the cellular network and mobile application
data, we only evaluate the enhanced DeepMove with se-
mantic modelling in two Foursquare datasets.

We first analyze the result of Foursquare check-in data
in Table 4.3. In baseline methods, SimpleRNN works better
than conventional sequential models Markov and FPMC

Methods Foursquare-NYC Foursquare-TKY
Top-1 Improv. Top-1 Improv.

Markov 0.081 -34.68% 0.124 -18.42%
FPMC 0.102 -17.74% 0.132 -13.16%
Geo-teaser 0.107 -13.71% 0.129 -15.13%
SimpleRNN 0.124 0 0.152 0

DeepMove 0.148 +19.35% 0.184 +21.05%
+C&MT 0.167 +34.68% 0.206 +35.53%

TABLE 2: Overall performance on Foursquare datasets.
“+C&MT” denotes the enhanced DeepMove with semantic
modelling, which contains a context adaptor and multi-task
prediction output.

significantly, which due to the high-order transition mod-
elling capacity of well designed recurrent neural networks.
Furthermore, with strength in complex sequential modelling
and multi-model embedding, SimpleRNN also outperforms
than embedding based baseline Geo-teaser which constructs
temporal POI embedding. Compared with the performance
of the general RNN, we find that the prediction accuracy
of DeepMove is about 20% better on average. This sug-
gests that there indeed exist periodical regularity in human
mobility, which helps to improve prediction accuracy. As
the general RNN captures the complex sequential transition
from the current trajectory, recurrent part of our model
can also do like this. Nevertheless, our model utilizes the
historical attention module to capture the periodical regu-
larity from the lengthy trajectory history. Such an attention
mechanism on the trajectory helps our model understand
human mobility and achieve much better prediction accu-
racy. Furthermore, the enhanced DeepMove with semantic
modelling via context adaptor and multi-task prediction
output outperforms the original DeepMove again, which
further improves the prediction performance by more than
11% respectively. The significant improvement provided by
enhanced DeepMove not only shows us the necessity of
understanding the semantic motivation of mobility but also
testifies the effectiveness of proposed semantic modelling
approaches.

Evaluation results of the other two mobility datasets
also demonstrate the superiority and generalization of our
model. Compared with the Foursquare check-in data, cel-
lular neural network data, and mobile application data
completely record human’s daily life. As Figure 7 presents,
the performance of our historical attention model outper-
forms the general RNN model over 8.04% on average in
mobile application data. The performance gain is 5.16% on
average in cellular network data, which demonstrates the
generalization of our model. Compared with the general
RNN, the advantage of our model is that it can capture
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the periodical regularity of human mobility from trajectory
history. In general, our model significantly outperforms all
the baseline methods on three different mobility data in
terms of prediction accuracy.

(a) top-1 prediction accuracy (b) top-5 prediction accuracy

Fig. 7: Performance on Cellular Network data and Mobile
Application data.

Besides, we compare our models with the baseline meth-
ods on the raw schema, i.e., without deleting the duplica-
tion, of two daily mobility data. In Table 3, we can observe
that our model outperforms the general RNN model by
only about 1%, which achieves the prediction accuracy of
69.4%. Meanwhile, even the prediction accuracy of Markov
model comes up to 50% in two mobility data. According
to a further analysis of the data, we find that many users
always stay in a location for several hours during the day.
For this kind of trajectory, we can achieve pretty well results
in location prediction only by simply copying the current
input, where complex methods like attention mechanism
take minor effect because of the principal influence of the
current input. Apparently, the performance gain of our
DeepMove will be limited. However, it will work well on
the mobility data where users move around different places.

cellular network mobile application

Markov 0.459 0.595
RNN-Long 0.595 0.690
Our model 0.593 0.694

TABLE 3: Prediction performance on dense mobility data.

4.4 The Effectiveness of Multi-Task Design
In this section, we use Foursquare-NYC data with the richest
semantic information (time, POI, and user text) among our
four datasets as an example to evaluate the effectiveness of
multi-task design in the mobility prediction problem.

We first directly analyze the relationship between loca-
tion, POI, and time in the mobility trajectory to present the
motivation of considering the next POI prediction and next
visiting time as the auxiliary tasks. In our data, all the PoIs
are categorized into 9 high-level classes: Shop & Service,
Arts & Entertainment, Outdoors & Recreation, Nightlife
Spot, Travel & Transport, College & University, Professional
& Other Places, Residence, and Food. Based on the above
classification, Figure 8(a) presents the visiting distribution
of locations with different POI categories. Furthermore, we
present the normalized temporal pattern of three kinds of
POI: shop & service, nightlife, and food in Figure 8(b). Based
on the results in Figure 8(a) and Figure 8(b), we find that
the visiting probability of each location is highly related to
its POI type and visiting time. In other words, if we can

(a) POI category distribution of all
the locations

(b) temporal visiting pattern of dif-
ferent types of locations

(c) effects of different weights of
auxiliary task loss

(d) effects of embedding sharing in
multi-task framework

Fig. 8: The motivation and effectiveness of multi-task design
on Foursquare-NYC data.

successfully predict the POI type and visiting time of the
next location, the prediction accuracy of the next location
should also be improved.

As shown in Section 3.3.2 and 3.4, we add two branches
for the auxiliary tasks and optimize the whole model with
the weighted loss function of three tasks. With fixing the
weights of the loss of next location prediction task and other
parameters, we try different values for αtime and βactivity
in our model and present the results in Figure 8(c). As
Figure 8(c) shows, different values of αtime and βactivity
influence the location prediction performance significantly.
Compared with the single task framework, proper weights
for auxiliary tasks will improve the prediction accuracy
from around 0.15 to higher than 0.16. Besides, too larger
weights of auxiliary tasks can hurt the performance of the
main task, e.g., when weights are set as 1.5 the performance
of the whole model is as low as the performance without
the multi-task design.

Following the common practice of multi-task, we use
the shared encoder structure in the model and only design
different branches at the end of the network. To evaluate the
necessity of shared embedding design, we design separate
embedding modules for each task and only share the recur-
rent module and historical attention module between tasks.
As shown in Figure 8(d), the performance of the model
with separate embedding design is significantly inferior to
the model with shared embedding design by decreasing
from 0.167 to 0.15. While three tasks share the same data
structure and semantic space, sharing embedding design
is parameter efficient and also provides more chances to
enable the feature fusion between different tasks.

Finally, we also test the effectiveness of context adaptor
and the result is presented in Figure 9. As Figure 9 shows,
after removing the context adaptor (blue curves in the
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Fig. 9: The effectiveness of context adaptor (denoted as CA
in the figure).

figure), the performance of our model decreases from 0.167
to around 0.15, which demonstrates the effectiveness of the
context adaptor for feature fusion. Besides, we also find
that the convergence rate of our model is slow down after
adding context adaptor, which is caused by the additional
parameters and computing for the high-order feature cross.

In summary, we observe the tight relation between three
tasks from the mobility data and design an effective multi-
task framework accordingly. With fully leveraging the signal
from the auxiliary tasks by controlling the weights of their
loss and cooperating with the context adaptor, the multi-
task design can improve the next location prediction accu-
racy of our model by more than 11%.

4.5 Reason Interpretation: Visualization of Historical
Attention Weights

Because of the importance of the periodicity of human mo-
bility, our model, especially the historical attention module,
is designed to capture the periodicity of human mobility.
Thus, in this section, we discuss whether our periodicity
assumption appears and whether our model really captures
it.

In Figure 10, we visualize the output of historical atten-
tion module to demonstrate this. To obtain the visualization,
we first collect the normalized weight of historical attention
module for a little seed users, and align them together on
the time dimension. Then, we re-normalize the weights and
draw them in Figure 10 in terms of the heatmap. The hori-
zontal axis and vertical axis of every square matrix in Figure
10 are both time period, the shade of the grids describe the
weight, where the deeper green means the larger weight.
For example, the top-left square matrix in Figure 10(a)
shows us the distribution of the historical attention weight
from 8.am. to 8. pm. during the weekday via the weekday’s
historical trajectories in mobile application data. The diag-
onal entries of it are remarkably larger than other entries,
which shows the day-level regularity of human mobility in
the different workday. The top-left square matrix in Figure
10(b) shows a similar result, while it is based on another
cellular network data. The bottom-right square matrix in
Figure 10(b) shows the attention distribution in the weekend
in cellular network data, which also reveals a remarkably
day-level regularity. In general, the results of Figure 10 show
that our model indeed captures the regularity and periodic-
ity from the historical trajectory. Meanwhile, our historical

attention module not only improves the prediction accuracy
but also offers an easy-to-interpret way to understand which
historical activities are emphasized in the future mobility.
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Fig. 10: Visualization of the output of the historical attention
module. Every matrix presents the correlations between
the current trajectory and historical trajectory. The diagonal
entries of the matrix present the correlations of trajectories
in the same time period of different days. The shade of the
grids describes the weight where the deeper green means
the larger weight. For example, the top-left matrix in (a)
shows the correlations of the current trajectory and the
historical trajectory on workdays on cellular network data.
The highlight diagonal entries tell us that trajectories during
the workday are periodical. The bottom-right matrix in (b)
tells us that trajectories during the weekend are even more
periodical than the workday.

4.6 Model Variations
In order to present the efficiency of the historical attention
module, we first compare two proposed historical attention
modules in terms of prediction accuracy and computa-
tion efficiency and then discuss how different sampling
strategies in the embedding encode attention module can
influence the final results. Finally, we discuss the effect of
user embedding and present the effectiveness of our model
in describing personal preference.

We compare the performance and efficiency of our pro-
posed two historical attention module on two datasets. The
results are presented in Table 4. The sequential encode
attention module works better than the embedding encode
attention module in most of the time especially in mobile
application data, while the latter one computes more effi-
ciently. Two reasons may account for the better performance
of the sequential encode attention module: 1) it captures
sequential information along the lengthy trajectory to some
extent, while the embedding encoder cannot; 2) the latent
space of output of it is more similar to the current mobility
status’s because of the similar generation structure.

Besides, we evaluate the system performance of different
sampling strategies in the sampling layer of embedding en-
code attention module. As mentioned in the model section,
we design three kinds of sampling strategies in the historical
attention module: average sampling, maximum sampling,
and none sampling. Figure 11(a) shows the evaluation re-
sults of three different samplings in two datasets in terms of
top-1 prediction accuracy. In general, the average sampling
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strategy works better among three strategies, while the
maximum sampling strategy performs a little worse, the
result shows us that most people own regular mobility
pattern and limited locations to visit. The performance gap
of three strategies on cellular network data are larger than
the mobile application data.

Finally, we identify every single user with a user ID and
add a user ID embedding feature to the model to capture
the personality. The results are presented in Figure 11(b).
Obvious performance gain can be observed in the general
RNN model after adding the user ID embedding. However,
the performance gain of our model can be omitted, which
demonstrates that our proposed model not only capture
deeper periodical pattern but also characterize personal
regularities.
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Fig. 11: Performance variation with the model design.

Dataset Model Accuracy Overhead(s)

cellular network attention 1 0.22 ≈600
attention 2 0.24 ≈1600

mobile application attention 1 0.24 ≈2600
attention 2 0.27 ≈11200

TABLE 4: Efficiency of two attention models.

4.7 Evaluation on User Groups

In order to evaluate the variation of performance gain
among different users, we cluster them into different groups
based on three rules: mobility entropy [30], explore ratio,
the radius of gyration [6]. Mobility entropy calculates the
entropy of locations in trajectory, which is related to the
regularity level of human mobility. Explore ratio represents
the fraction of new locations in test data, which do not exist
during the training. Thus, one person with more regular
behaviors should have lower mobility entropy and lower
explore ratio. The final rule is the radius of gyration which
describes the spatial range of the mobility.

The evaluation results are presented in Figure 12, where
the vertical axis shows the performance gain compared with
the baseline method-general RNN. There are two interesting
insights from the result: 1) our model outperforms the
baseline method on almost all kinds of users; 2) our model
predicts non-regular users better than the baseline method
that meets the goal of our historical attention module. For
example, in the top-left image of Figure 12, our model’s
prediction accuracy increases when the mobility entropy of
users increases. With the effective usage of lengthy historical
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Fig. 12: Performance varies with mobility entropy/explore
ratio/radius of gyration (rg) on cellular network data (left)
and mobile application data (right).

trajectory, our model captures the underlying and deeper
periodical patterns of human mobility.

In summary, extensive results on four mobility datasets
demonstrate the superiority of our proposed model
compared with the baselines. Specifically, the proposed
semantic-based multi-modal and multi-task learning frame-
work further improve the prediction performance of Deep-
Move on the mobility dataset with abundant semantic in-
formation.

4.8 The Effect of Parameters

In order to evaluate the effects of hyper-parameters on
the prediction, there are four parameters investigated in
Figure 13. Three of them are the embedding size of tra-
jectory input (location, time, user ID) and the left one is
the size of the hidden layer. Location embedding size is
critical for embedding a one-hot location vector with spatial
correlation. As Figure 13(a) shows, we find that the size of
300 performs best among other settings. With the length of
location embedding getting longer or shorter, the accuracy
of three datasets will decrease. As for time embedding,
experimental results from Figure 13(b) show that smaller
size has better performance, indicating that time embedding
should not take up a large part in the input vector. The
curves in Figure 13(c) are flatter, which shows that User
ID embedding is relatively stable with embedding size,
which manifests a less important status than location and
POI embedding. As shown in Figure 13(d), our model is
more sensitive to hidden layer size compared with other
parameters. The accuracy curve declined sharply with the
hidden layer size exceeds 150, which is the optimal value
for three datasets.

To further understand the role of location embedding,
we check whether the location embedding module in our
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model really learns the spatial dependencies. We cluster the
embedding weights of the location embedding module of
the model in different training stages (before the training
and after the training) by the k-means algorithm in the
high-dimensional space in neural network. For example,
the clustering results of cellular network data are presented
in Figure 14, the location belongs to the same cluster in
the high-dimensional space will be rendered with the same
color. As we can observe from Figure 14(a), the regions
close to each other in the physical space always are not
rendered with the same color, which indicates that the loca-
tion embedding module with one-hot input does not know
about the spatial dependencies. In Figure 14(b), we can
observe remarkable clusters in the physical world, which are
similar to the clusters in the high-dimensional space in the
neural network. The well-organized clusters in Figure 14(b)
demonstrate that our model really learns about the spatial
dependencies in the training.

5 RELATED WORK
Related works can be classified into two categories: model-
based methods and pattern-based methods. Besides, we
introduce related works on RNN and attention model.

Conventional methods Markov model and its variations
are one of the most common models of these approaches. In
Markov-based models [13, 31], they model the probability
of future action by building a transition matrix between
several locations based on the past trajectories. To capture
the unobserved characteristics between location transition,
Mathew et al. [2] cluster the locations from the trajectories
and then train a Hidden Markov Model for each user. Con-
sidering the mobility similarity between user group, Zhang
et al. [3] propose GMove: a group-level mobility modeling
method to share significant movement regularity. Different
from existing Markov-based models, our model can model
time-dependent and high order transitions. Pattern-based
methods [8, 9, 12, 28, 32] are another branch of previous
works, which first discover the popular sequential mobility
patterns from the trajectory, and then try to predict the mo-
bility based on these popular patterns. Matrix factorization
can also be regarded as a kind of pattern discovered method.
Matrix factorization (MF) [10, 33] emerges from the recom-
mendation system and the basic idea of it is to factorize the
users-items matrix into two latent matrices that represent
the users and items characteristics. Cheng et al. [11] fuse MF
with the geographical influence by modeling the location
probability as a multi-center Gaussian Model. Combining
Markov model with matrix factorization, Rendle et al. [29]
propose the factorized personalized Markov model (FPMC)
to do item recommendation. Based on FPMC, Cheng et
al. [4] propose a matrix factorization method named FPMC-
LR to capture the sequence transition with Markov chain
while considering the localized region constraint. Compared
with pattern-based methods, our model can not only model
the transitional regularities shared by all the users but also
model the personal preference based on the user embedding
and personal historical trajectory.

Deep Learning methods Recurrent Neural Networks
(RNN) [34, 35] is a powerful tool to capture the long-

range dependencies in the sequence and has achieved suc-
cess in Natural Language Processing (NLP) [21, 36], Image
Caption [37], etc. Because of its powerful representation
ability, RNN have been applied to many fields like click
prediction [38], recommendation system [39, 40], and mo-
bility prediction [5, 41, 42, 43, 44, 45]. Zhao et al. [7, 46]
propose Geo-teaser to build temporal POI embedding for
better next POI recommendation, which focuses on captur-
ing the temporal variation of different features. Liu et al. [5]
propose Spatial-Temporal Recurrent Neural Networks (ST-
RNN) to model temporal and spatial contexts. However,
the proposed model is too complicated to train and apply
with so many parameters. Besides, it can not be applied
to the discrete location prediction scene because of its con-
tinuous spatial modeling method. Du et al. [41] propose
Recurrent Marked Temporal Point Process (RMTPP) to learn
the conditional intensity function automatically from the
history. However, this model is not specific for the trajectory
prediction and does not consider the natural characteristics
of trajectory like multi-level periodicity. By coupling con-
volutional and recurrent neural network, the Yao et al. [47]
propose DeepSense: a unified deep learning framework for
mobile sensing data. However, this model needs uniform
sampling data and also does not consider the multi-level
periodicity of trajectory. Besides, some researchers also de-
velop mobility prediction models under specific constraints
like privacy constraints [48, 49].

After the first try in DeepMove [16], Zhao et al. [50]
propose to use Bi-LSTM with attention to better understand
the sub-trajectory for destination prediction and Altaf et
al. [51] design two independent spatial and temporal atten-
tion unit for better location prediction via attention. The at-
tention unit becomes widely used basic trajectory sequence
modeling unit [50, 51, 52, 53, 54]. Besides, the role of our
historical attention is similar to the user memory network
in RUM [55]. Different from RUM, our method focuses on
the sequential transitions between mobility. However, the
explainable prediction of human mobility is far from the
application. In this paper, different from only relying on
attention weights, we explore the semantically motivated
location prediction as another try for explainable predic-
tion. Multi-task learning [56] leverages useful information
contained in multiple related tasks to help improve the gen-
eralization performance of all the tasks or one target task.
Yang et al. [42] propose to jointly model social networks
and mobile trajectories. Liu et al. [57] model multiple types
of behaviors in historical sequences and achieved better
performance than only modeling a single type of behavior.
Different from them, we propose to predict the POI label of
location as an auxiliary task for better mobility prediction,
which is more generalized and intuitive for human mobility
prediction.

6 CONCLUSION

In this paper, we investigate the problem of mobility predic-
tion from the sparse and lengthy trajectories. We propose
an attentional mobility model, which enjoys two novel
characteristics compared to previous methods: 1) a multi-
modal embedding recurrent neural network for capturing
multiple factors that govern the transition regularities of
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(a) location embedding size (b) time embedding size (c) user embedding size (d) hidden layer size

Fig. 13: The effects of different parameters on different mobility datasets.

(a) before training (b) after training

Fig. 14: The clustering results of location embedding weights
after training on cellular network data.

human mobility; and 2) a historical attention module for
modeling the multi-level periodicity of human mobility.
Further, we extend it by modelling the semantic motivation
of human mobility by a context adaptor and multi-task
learning prediction output. Extensive experiments demon-
strate that proposed models significantly outperform all the
baselines on four datasets. Meanwhile, the visualization of
historical attention weights shows that DeepMove is able
to effectively capture meaningful periodicities for mobility
prediction.

There are several future directions for our work. First, we
currently only predict the next location because we fix the
time interval in practice. In the future, we plan to expand
the location prediction into the spatiotemporal point pre-
diction by taking the potential duration into consideration.
Second, while the proposed usage of historical attention unit
and multi-task learning framework in our model enables
the implicit interpretable mobility prediction, the explic-
itly explainable mobility prediction is still a challenging
task. Third, we directly use the high-dimensional one-hot
representation of location in this paper and how to build
a unified and effective location representation for better
mobility prediction is also an interesting topic.
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