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Abstract

Dynamic high resolution data on human population distribu-
tion is of great importance for a wide spectrum of activities
and real-life applications, but is too difficult and expensive to
obtain directly. Therefore, generating fine-scaled population
distributions from coarse population data is of great signifi-
cance. However, there are three major challenges: 1) the com-
plexity in spatial relations between high and low resolution
population; 2) the dependence of population distributions on
other external information; 3) the difficulty in retrieving tem-
poral distribution patterns. In this paper, we first propose the
idea to generate dynamic population distributions in full-time
series, then we design dynamic population mapping via deep
neural network(DeepDPM), a model that describes both spa-
tial and temporal patterns using coarse data and point of in-
terest information. In DeepDPM, we utilize super-resolution
convolutional neural network(SRCNN) based model to di-
rectly map coarse data into higher resolution data, and a time-
embedded long short-term memory model to effectively cap-
ture the periodicity nature to smooth the finer-scaled results
from the previous static SRCNN model. We perform exten-
sive experiments on a real-life mobile dataset collected from
Shanghai. Our results demonstrate that DeepDPM outper-
forms previous state-of-the-art methods and a suite of fre-
quent data-mining approaches. Moreover, DeepDPM breaks
through the limitation from previous works in time dimen-
sion so that dynamic predictions in all-day time slots can be
obtained.

Introduction
Obtaining high-resolution population distribution(HRPD) is
of great importance for urban applications of business lo-
cating, transportation planning, city service managing, etc.
However, the HRPD is only available to some specific com-
panies like the internet service providers. The general busi-
nesses have to pay a lot for it or rely on some coarse
and static population data to make decisions. Meanwhile,
the real-time collection of HRPD data is also computing-
consuming and generates unnecessary burdens to computing
systems. Thus, more efficient methods are highly required in
obtaining HRPD data.
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Some previous studies utilized external information like
remote-sensing data to generate HRPD (Wu, Qiu, and Wang
2005; Gaughan et al. 2013; Stevens et al. 2015). As the state-
of-the-art for these works, R. Stevens. et.al. (Stevens et al.
2015) used random forest algorithm via lots of data sources.
However, these works heavily rely on many ancillary data
sets that are expensive to obtain, difficult to process, and
limited to certain time slots.

Other studies developed interpolation algorithms for
super-resolution images, which provided powerful tools to
convert low-resolution data into high-resolution data, inde-
pendent of other ancillary data (Nasrollahi and Moeslund
2014; Yang, Ma, and Yang 2014; Vandal et al. 2017). One
of the state-of-the-art method is SRCNN (Dong et al. 2016),
which first utilized convolutional neural network as the inter-
polate function to model complex spatial relations in image.
However, the amplification of this model is limited to 2 ∼ 4,
which is too small for our population application. Addition-
ally, the HRPD is not only related to the coarse population
distribution but also the structure of the urban, which can not
be considered directly by these existing methods.

Several challenges exist in dynamic population mapping.
First, it is not easy to define a simple math function to de-
scribe the complex spatial relations. Second, the HRPD is in-
fluenced by other external knowledge like urban structures.
Third, generating temporal trends from scratch is difficult.

In this paper, we propose DeepDPM, a deep learning
based model that consists of augmented stacked super-
resolution convolution neural network(SRCNN) as the static
part, and time-embedded LSTM as the dynamic part, to eval-
uate population mapping in both spatial and temporal di-
mensions. Our static part predicts HRPD at different time
slots, while the static output is further used by the dynamic
part to generate temporal trends. PoI(Point of Interest) is
also considered as an ancillary data which is easy to ob-
tain. Our experiments showed that DeepDPM outperforms
other traditional methods, and generates high-resolution re-
sults for urban population structures.

Our contributions can be summarized as follows:

• We present the idea to generate, in a scalable manner,
dynamic population distributions in full time series from
static disaggregate data sets into finer scales. To the best
of our knowledge, this is the first time to analyze both spa-
tial and temporal patterns in an urban population mapping



research work.
• We propose DeepDPM, an augmented structure that con-

sists of static prediction and dynamic generation parts,
using super-resolution convolutional neural network and
time-embedded LSTM separately, based on observational
and augmented PoI data.

• We perform extensive experiments based on real-life mo-
bility dataset in Shanghai. Our results demonstrate that
DeepDPM outperforms the previous state-of-the-art mod-
els and a suite of frequent data-mining and machine learn-
ing methods in terms of several metrics in predictive per-
formance.

Preliminaries
In this section, we review the population mapping problem
and introduce the special scenarios to be investigated in this
paper. Then we briefly overview our solutions.

Definitions and Problem Formulation
Definition 1 (Grid Region) In this study, we partition a
city into an M×N grid map based on the longitude and lat-
itude, where each grid denotes a region called grid region.
As the basic space unit, we investigate the population distri-
butions among these gird regions and a typical grid region
is a 1km×1km grid in the map.
Definition 2 (Population Distribution) In our paper, the
population distribution Xi represented in terms of grid map
depends on different aggregation level, where i ∈ {1, 2, 3}.
i can be equal to 1,2 or 3 each in district level, street-block
level and fine-grained level, where X3 can also be denoted
as Xfg . For any pair of Xp and Xq , p < q, it obeys the
following relationship:

xend∑
i=xstart

yend∑
j=ystart

Xp(i, j) =

xend∑
i=xstart

yend∑
j=ystart

Xq(i, j) (1)

Further more, taking the regularity and mobility of popu-
lation into consideration, we also utilize typical population
trend along time to generate dynamic population distribu-
tion Xt

i of time t.
Problem 1 Given the static aggregated population data Xi

and the regularity pattern of population, generate the dy-
namic finer-scaled grid region population distribution Xj =
X1

j , X
2
j , ...X

24
j by a certain mapping function F in a day.

Figure 1: Basic framework of our solution for aggregated
population mapping problem.

Solution Overview
As Figure 1 shows, we divide the total task into two sub-
tasks as follows.

Problem 1: Spatial modelling. Previous studies are lim-
ited in the reality. Existing studies (Gaughan et al. 2013;
Stevens et al. 2015) rely on various ancillary data like high
resolution imagery to obtain the spatially weighted density.
However, these large-scale data are expensive to obtain and
challenging to process. Furthermore, because of the strong
dependency on the spatial information from the input data,
previous studies used semi-automated classification algo-
rithms combined with simple dasymetric mapping approach
like random forest (Stevens et al. 2015), which is limited in
directly modelling the spatial relations.

Solution Overview:As a powerful spatial modelling tool,
convolution neural network (CNN) (LeCun et al. 1989;
He et al. 2016) is widely used in many tasks. Particularly,
CNN has been applied into image super-resolution task,
which is aimed to generate high-resolution image based on
the low-resolution image. Based on the formulation in the
previous section, the aggregated population mapping task
follows the similar goal and working manner with image
super-resolution task. Inspired by this, we introduce CNN-
based model into our task to enhance the modelling of spa-
tial relations and constrains that exist.

Problem 2: Temporal modelling. Although the tempo-
ral trend is important, little previous studies of aggregated
population mapping task has considered this because of the
lack of dynamic data and proper methods for generating the
temporal trend of population distribution. They regarded the
population mapping problem as a static process only con-
sidering the night scenarios. However, the fact is that pop-
ulation distributions in the day in city are totally different
from those in the night. Thus, solutions proposed by previ-
ous studies failed in generating the fine-grained population
distribution during a full day long period.

Solution Overview: According to Xu. et.al. (Xu, Zhang,
and Li 2016), the temporal pattern of population for a cer-
tain region can be divided into several typical classes based
on its function. For example, the population of residence
region first decreases to a low level in the morning, keeps
during the day and finally comes back to the original level.
Thus, the temporal pattern of population can be regarded as
a function of time. Based on the observation, we consider to
utilize recurrent neural network (RNN) (Lipton, Berkowitz,
and Elkan 2015; Hochreiter and Schmidhuber 1997) as the
basic sequential model to generate temporal trends for pop-
ulation of each region. Particularly, we introduce the time
factor into the model by embedding to control the genera-
tion process.

The Spatial-temporal Mapping Model
As presented in the Figure 2, our model consists of two main
components: 1) spatial mapping model, which is designed
to map the aggregated low-resolution population into high-
resolution population; 2) temporal generation model, which
is designed to capture the typical temporal trend and gener-
ate smoothed dynamic population results.



Figure 2: The Network structure of our spatial-temporal
mapping model.

Spatial Mapping Model
Mapping the aggregated population into higher-resolution
population is similar to image super resolution problem, in
which SRCNN is one of the state-of-the-art methods.

SRCNN consists of three operations (Dong et al. 2016):
patch extraction, non-linear mapping, and reconstruction.
In SRCNN, each operation is implemented as a three-layer
convolution network including a batch-norm layer, a con-
volution layer and a non-linear activation layer (e.g., Relu).
By stacking these three operation units, we formulate basic
spatial mapping unit in our model. With the low-resolution
image X as the input and the high-resolution image Y as the
target, the mapping function F is optimized with the follow-
ing objective function:

arg min
Θ

n∑
1

‖F (Xi; Θ)− Yi‖22, (2)

where Θ denotes the parameters of the network and n de-
notes the instances of image pairs.

The basic mapping unit SRCNN can only handle the reso-
lution enhancement ratio between 2 to 4, while in population
mapping this ratio can be up to 15. One possible solution is
to stack more convolution networks to directly meet with the
higher enhancement requirement, which however, fails in
learning complex mapping functions because of the lengthy
propagation path and weak supervised signals. Thus, we de-
compose the high-enhancement ratio mapping task into sev-
eral low-enhancement ratio tasks. In practice, we train sev-
eral independent mapping network units for each of these
sub-tasks by providing their related mapping ground-truth.
Finally, we stack these trained independent mapping units
to form a comprehensive spatial mapping model to complete
the whole mapping task. In detail, two SRCNNs are stacked
in generating X2 from X1, and another two are stacked in
generating X3 from X2. The basic mapping units and the
whole procedure are presented in Figure 3.

It’s worthy to mention that cascading super-resolution
networks altogether directly is also a considerable method,
which is to train the model in one end-to-end way. How-
ever, during experiments we found that stacking outperforms
cascading. Generating distributions in a lower resolution by
upscaling fine-grained ground truth allows us to train inde-
pendent input/output pairs and stack them together at test
time as well as keeping accuracy. While in a cascading one,
the fact that each output is exactly the input of the follow-
ing level may lead to some error in propagation(Vandal et
al. 2017). Besides, according to Xu. et.al. (Xu, Zhang, and
Li 2016), the function of a region can play an import role in
forming its population pattern. Meanwhile, the function of
a region can be represented by the Point of Interests (PoIs)
distribution to some extent. Hence, we introduce PoI distri-
bution matrix to describe the function of regions. Different
types of PoI matrix are regarded as specific channels to form
the multi-channel input matrix in aggregated level.

Figure 3: Stacked network structure of the spatial mapping
model.

Figure 4: Structure of temporal smoothing model.

Temporal Generation Model
Except the spatial distribution, the temporal trend is also an
import characteristic of population distribution. By smooth-
ing population along time, we can reduce the spatial esti-
mation error and better understand the distribution. Accord-
ing to Xu. et.al. (Xu, Zhang, and Li 2016), while the con-
crete temporal variations of population in different regions
are different, their temporal trends can be classified into sev-
eral typical types based on the function of each region. And
these temporal trends are representative and shared by differ-
ent regions and cities. In this paper, we use long-short term
memory network (LSTM), a population variation of RNN as
the basic recurrent unit to model these typical temporal trend
series.



During the training, we first extract the temporal popula-
tion series of every region from the output of spatial map-
ping model. Then, we use one LSTM model to train all the
population series. In this way, the parameters of the neural
network are shared by all regions, which makes the model
small, robust and can be generalized in modeling the tem-
poral trends of population. To model the influence of time
factor (e.g., hour of day), we introduce time embedding into
our temporal generation model. Particularly, we first discrete
the time of day into 24 hours and encode them into 24-
dimension one-hot vectors. Then, we build a linear network
layer as embedding table to project the one-hot vector into
dense vector. Then, the original population value (unknown
value can be set as 0) and the time vector are grouped to-
gether as a whole to feed into LSTM network in every time
step. The details of the temporal structure is presented in
Figure 4.

Performance Evaluation
In this section, we conduct extensive experiments on mo-
bility dataset in Shanghai to answer the following research
questions:

• RQ1: Spatial modelling to obtain the population dis-
tribution in higher resolutions at a fixed time slot

• RQ2: Temporal modelling to obtain the dynamic pop-
ulation distribution in a fixed resolution

Experimental Settings
Datasets We collect our representative real-life mobility
dataset from ISP , which contains cellular network access
records in 9685 different base stations in Shanghai for 4464
different time slots, from 1st July, 2017 to 31st July, 2017
(the data usage is recorded every 10 minutes for 31 days).
Considering the periodicity difference between weekdays
and weekends, we manually drop the data on weekends and
focus on weekdays’ data in experiments.

We use the address of base station to estimate cellular data
users’ location distribution. Since mobile devices keep ac-
cessing cellular data as long as their data connection are kept
on, our dataset well represents the population distribution
in Shanghai. Similar data types are used in urban research
as well, such as call detail records (Isaacman et al. 2012;
Ficek and Kencl 2012) or GPS data(Zheng et al. 2008).
However, these data above are event driven, which update
only when a user acquires service. While our dataset pas-
sively captures users’ newest location information, which
guarantees the credibility of our analysis.

Also, we collect our PoI dataset from Tencent, which con-
tains 618296 PoI records in 17 categories. We manually clas-
sify them into 4 categories, entertainment, business, trans-
portation junctions and residence, based on their functions.

Preprossessing One obstacle in using mobility records to
represent population distribution is that base stations lose the
track when devices are turned off, or are disconnected due to
other various factors, like weak signal strength. Therefore,
an augmented algorithm is in need to recover the missing
fingerprints.

Aggregated Categories Original Categories

Entertainment
Hotel, Entertainment, Shopping,
Catering, Culture, Sports,
Tourist Spots

Business and Education Departments, Industries,
Education, Medical

Transportation Junctions Transportation Junctions
Residence Housing, Residential Services

Table 1: PoI Classification from original categories into ag-
gregated categories.

We define the record user number of base station i in time
slot t as Xi[t], the actual number as Yi[t], the total time slot
number as T , and the total station number as N . We first
compute the sum of all activated devices at each time slot t,
and find out the maximum of it ever recorded as the repre-
sentation of population amount in the city. Then we estimate
the percentage of activated devices denoted by Ri[t]. Finally
we obtain the estimated user number Yi[t]. The formulation
in math is described below:

S[t] =

N∑
i=1

Xi[t] for t = 1 to T, (3)

R[t] =
S[t]

maxT
j=1 S[j]

for t = 1 to T, (4)

Y [t] =
Xi[t]

R[t]
, for t = 1 to T, i = 1 to N (5)

Since the base stations are located irregularly in geome-
try, we need to further generate the grid regions. We generate
Voronoi diagrams based on the distribution of base stations.
The contribution of population from each polygon to each
grid is determined by the ratio, which is the intersection area
divided by the polygon area. Finally, the population distribu-
tion at each time slot can be successfully mapped into grids,
which is an 83*114 grid map based on longitude and lati-
tude. PoIs mapped into the same grid are counted together,
and the sum is assigned as the grid value according to differ-
ent PoI categories.

After obtaining the fine-grained grid region distribution
denoted as Xfg or X3, we further generate the aggregated
distribution at another two levels, X1 and X2. The grid maps
remain the same size, while grids in the same district or the
same street area are equalized using their average. Grid val-
ues outside the boundary are set to 0. Those grids where
more than half of the area are out of boundary are dropped
from the patch set.

Baselines Automated Statistical Downscaling(ASD)
(Hessami et al. 2008) is a traditional method for statistical
downscaling. ASD requires regression methods to predict
population density pixel by pixel. We compared three
ASD methods, which are logistic and lasso regression,
support vector machine(SVM) regression and artificial
neural network(ANN) regression. Each method uses the
density of lower resolution and PoIs to predict the higher



resolution population map. Due to the time complexity
of SVM, we randomly chose 80000 pixels to train SVM
model. A second set of methods, random forest-based
dasymetric mapping approach (Stevens et al. 2015) and
decision tree algorithm are applied to compare to our spatial
mapping model. According to the approach described by
Stevens et al. (Stevens et al. 2015), all the population data
are transformed into log density. Higher resolution map
is predicted by applying random forest regression on log
population density of lower resolution and PoIs. Decision
tree algorithm uses the same data processing approach.

Metrics and Parameter Settings We use 5-fold cross-
validation in the experiment. For static model that consists
of SRCNNs, the input data is obtained by concatenating
population-grid maps with PoI-grid maps. The depth of the
final matrix relies on how many PoIs categories we use, with
all 4 categories as default. Except that 38×38 patches are
used in X2-Xfg level and 58×58 in X1-X2 level, all SR-
CNNs are trained with the same set of parameters.Layer 1
consists of 64 filters of 9x9 kernels, layer 2 consists of 32
filters of 1x1 filters, and the output layer uses a 5x5 ker-
nel. Higher resolution models which have a greater num-
ber of sub-images may gain from larger kernel sizes and an
increased number of filters. Each network is trained using
Adam optimization with a learning rate of 10−4 for the first
two layers and 10−5 for the last layers, and MSE loss as the
loss function for every training step.

Each model is trained for 105 iterations with a batch size
of 512. Tensorflow is utilized to build and train DeepDPM.
Each SRCNN is trained independently on a Titan X GPU,
and the inference is then executed sequentially on a single
Titan X GPU.

In order to measure the performance of our structure
and other traditional methods in comparison, we use a few
key metrics to show static model’s applicability. Root mean
square error(RMSE) and Pearson’s correlation(CORR) are
used to measure the prediction quality. We also use normal-
ized root mean square error(NRMSE) for inner comparison
later.

RQ1: static population mapping performance
Overall Model Without considering dynamic changes in
distribution during the day, we first train an overall model
with all data available in weekdays to compare DeepDPM
with other baseline methods.

Our experiment compares performance with another six
approaches, static model, random forest, decision tree, svm,
ann and lasso, presented on Table 2 The three metrics dis-
cussed above are computed at all time slots in the test set and
the averages are collected. We find that our static model out-
performs all other methods in both X1-X2 level and X2-X3

level in terms of all three metrics. In detail, random forest
gives the best prediction among all traditional methods, and
is slightly outperformed by our static model by a difference
in RMSE for no more than 3.0 in X1-X2 level. While the
difference enlarges as the number of stacked SRCNNs in-
creases, which is about 14.6 in X1-X3 level. In terms of cor-
relation, decision tree, random forest and our model all per-

form well. Ann costs the longest run time, while it performs
poorly compared to others. Stacked convolution neural net-
work shows its strong ability in describing spatial structure.

Poi Influence on Model Performance It is important to
choose correct type and amount of PoIs as augmentation be-
fore training. We run our experiment based on different com-
binations of PoI and with completely no PoI as presented
in Figure 5 Generally, performance gets promoted rapidly
as PoI usage increases. The result verifies the hypothesis
that the more information augmented in PoIs we add into
our model, the more precise our predictions will be. Using
all four categories gives the best result. In detail, we find
out that the entertainment PoIs play the most important role,
with residential PoIs following when different categories are
considered alone. The combination usage of such two PoIs
also prove to outperform other bi-combinations. The model
without using any PoI performs terribly. Local functions of
different regions prove to be an important factor in describ-
ing population distribution pattern.
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(a) RMSE performance on different poi combinations.
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(b) Results on different poi distribution.

Figure 5: Comparison of predictive ability using DeepDPM
with differnet PoI combinations. #1, #2, #3, #4 stand for
entertainment, business, transportation, residence PoIs sep-
arately. #0 stands for prediction with completely no PoI us-
age.

Besides measuring global predictive ability based on dif-
ferent PoI usage, we also test local performance in different
regions in our default model considering all 4 PoIs, shown
in Figure 6. Figure 6(a) shows the relationship between the
RMSE with the distance to the center of downtown (the grid
where there is the highest population density). It turns out
that we can reach high mapping accuracy in both suburbs
and downtown areas , however the performance descends
rapidly in the joint places. This is for population distribution
change frequently in these places, which makes it hard to
predict population distribution in finer scales. Figure 6(b)
shows the relationship between the performance and the
amount of PoIs locally. Figure 6(c) shows the relationship
between local performances with the functions of local re-
gion. Industrial parks and suburbs turns out to have a much



District to Street-Block(X1-X2) District to Fine-Grained(X1-X3)
Method RMSE NRMSE Corr RMSE NRMSE Corr

Lasso 513.2714 2.5975 0.7966 697.3197 3.5237 0.7144
ANN 465.7865 2.3573 0.8362 679.8032 3.4352 0.7334
SVM 850.5768 4.3045 0.2658 1002.3468 5.0650 0.2215

DecisionTree 51.5804 0.2610 0.9982 117.1829 0.5921 0.9931
Random Forest 47.0408 0.2381 0.9985 93.5023 0.4725 0.9956
Static Model 44.5574 0.2255 0.9987 78.9081 0.3987 0.9978

Table 2: Comparison of predictive ability between all six methods for all time slots in the dataset. All four PoIs are used in the
experiments.

better performance than other regions, for the population
distributions in these areas are much steadier than those in
other regions as time changes, while residence regions suffer
from frequent population movement.

(a) Results on down-
town and suburb.

(b) Results on differ-
ent PoI distribution.

(c) Results on differ-
ent functional zones.

Figure 6: Comparison of local prediction performance using
DeepDPM in different regions.

Segmented Model Considering different distribution pat-
terns at different time slots in a day, temporal changes might
have a strong impact on the prediction. We manually sepa-
rate the entire dataset into three parts, which represent a spe-
cific period each, to further investigate the influence of dif-
ferent time in a day on our model precision. Period intervals
include 0:00-7:00, 7:00-17:00 and 17:00-24:00. Considering
the length of this paper, we only show the comparison results
in Period2(7:00-17:00) in Table 3.

We find that DeepDPM still outperforms other baseline
algorithms in three segmented models. While compared to
the overall model using all time slots, the segmented one
reached better performance. It is because population is more
steady within a limited period. It proves that a flatter tem-
poral trend in a fixed period in a day helps to improve pre-
dictive ability in the static model, for the static model itself
doesn’t take temporal changes into account.

However, the improvement from time slot segmentation
is not enough to evaluate temporal changes in population
distribution. We further put forward our dynamic population
mapping model and conduct experiments to solve the prob-
lem addressed.

RQ2: dynamic population mapping performance
Quantitative Results We use time-embedded LSTM to
generate our temporal model. Fine-grained results from
static model in X2 - X3 level are the input sent to the
model. Table 4 shows the prediction performance in terms

of RMSE, NRMSE and MAE. The initial results from the
static model and prediction using flat LSTM are shown as
baselines.

Compared with our static model, both two LSTM mod-
els showed their advantage of their powerful ability in se-
quence modeling. We find that the the LSTM+Time Em-
bedding model reduces NRMSE by 14.5%. This suggests
that the strong time-sequence regularity in population that
our static model doesn’t captured can be modelled well in
our temporal model. As shown in (a) in Figure 7, NRMSE
changes in all three methods in all time slots of a day are il-
lustrated. Our temporal model outperforms other two mod-
els at almost every time slot, except that LSTM performs
as well as it at several moments at around 4:30 and 17:00.
The general LSTM model has more accurate prediction than
static mapping except from around 7:00 to 11:00. The tem-
poral model trained based on the input from our static one
can be able to model the complex sequential transition as
well as holding attention on spatial patterns.

Illustrated Cases After a generalized analysis, we focus
on detailed prediction performance in local areas. We choose
a typical grid to study the predicted population series in a
day time. (b) in Figure 7 shows the population change in a
day time. The red curve stands for the result from our tem-
poral prediction, from which we can tell the similarity more
visually. The blue curve represents prediction result from
our static model, which almost remains at the same quan-
tity, even though it shares the same undulating trend as the
ground truth. The changing range in a day time of ground
truth exceeds 1000 in population, while the static model only
ranges no more than 100.It shows that the spatial modelling
using super-resolution structure does lose sequential struc-
tures when capturing spatial regularity. While the population
sequence pattern of our temporal prediction is much more
similar to the ground truth.

The case study explains the reason static model fails to
predict temporal trend that the temporal one is able to. Since
the distribution in all time slots are regarded as the same into
SRCNNs, the system tends to average all population signals
from different time slots, which results in a great tempo-
ral pattern loss. While our time-embedded LSTM tempo-
ral model overcomes the shortcoming, and retrieves it by
time-based training. The whole DeepDPM system thus re-
tains both spatial and temporal patterns in urban population
distribution.



District to Street-Block(X1 −X2) District to Fine-Grained(X1 −X3)
Method RMSE NRMSE Corr RMSE NRMSE Corr

Lasso 491.4463 2.4870 0.8025 667.8841 3.3749 0.7214
ANN 441.9888 2.2368 0.8440 641.2524 3.2404 0.7762
SVM 824.2706 4.1713 0.2733 969.5835 4.8995 0.2285

DecisionTree 44.0956 0.2231 0.9986 97.1856 0.4911 0.9953
Random Forest 42.8038 0.2166 0.9986 84.4569 0.4268 0.9961
Static Model 40.7466 0.2062 0.9989 76.9615 0.3788 0.9980

Table 3: Comparison of predictive ability between all six methods for time slots in period 2, from 7:00 to 17:00 every day.

Method RMSE NRMSE MAE

Static Mapping 86.87 0.4517 32.28
LSTM 81.46 0.4236 31.60

LSTM+Time Embedding 74.27 0.3862 32.01

Table 4: Performance comparison of static and dynamic
population mapping in Shanghai.

(a) Performance comparison in
terms of global NRMSE at dif-
ferent time slots.

(b) Case study: population series
at one typical grid for all three
model predictions and ground
truth.

Figure 7: Performance of Dynamic population Mapping in
Shanghai.

RELATED WORK
Two major fields are related to our study.

Fine-Grained Population Mapping: Early studies (Ander-
son and Anderson 1973; Hessami et al. 2008; Sutton et al.
2001) used remotely sensed information, such as satellite
imagery, as the main data source. While Azar et al.; Chen
chose to refine census population distribution using ancillary
data. As the state-of-the-art method in the field, R.Stevens
(Stevens et al. 2015) used random forest (Liaw, Wiener, and
others 2002; Breiman 2001) algorithm as a dasymetic re-
distribution approach based on both census and remotely
sensed data. Compared to their studies, our DeepDPM uses
coarse population data like census data, and PoI data as aug-
mented data, which are much easier to obtain. Besides, our
study breaks through the limitation in the time dimension.

Image Super-Resolution: Early studies used filtering ap-
proaches, e.g. linear, bicubic or Lanczos (Duchon 1979) fil-
tering. Freeman, Jones, and Pasztor and Freeman, Pasztor,
and Carmichael firstly sought to construct mapping algo-
rithm between training patches and corresponding known

high-resolution counterparts. In recent years, convolutional
neural networks(CNN) based SR algorithms have shown ex-
cellent performance (Wang et al. 2015; Dong et al. 2016;
Wang et al. 2016; Kim, Kwon Lee, and Mu Lee 2016),
where SRCNN (Dong et al. 2016) is one of the state-of-
the-art for the problem. Vandal et al. successfully used the
SRCNN based DeepSD structure in climate prediction. Our
study also learns from the advantage of SRCNN to construct
our static part of DeepDPM structure, and furthermore im-
plements the dynamic part to learn the temporal pattern.

LIMITATION AND FUTURE WORK
Currently, we are using mobile dataset to represent HRPD.
However, the premise of our preprocess method is the hy-
pothesis that the urban area has no explicit inside or outside
population flows. This may be a major source of systematic
error. We will consider more practical approaches to quan-
tify the gain and loss of our current method, and explore
more to reduce the error.

Conclusion
In this paper, we investigate population mapping in both
static and dynamic view using PoI as augmented informa-
tion. We propose a deep learning based model to generate a
complete population mapping structure, DeepDPM, which
has two novel characteristics compared to previous stud-
ies and methods: 1) a stacked SRCNN based static model
that evaluates static population prediction; and 2) a time-
embedded LSTM based dynamic model that smooths the
temporal change. Extensive experiments on the dataset of
mobility data collected from Shanghai showed that Deep-
DPM significantly improves the performance compared to
all other baselines. Meanwhile, our structure also breaks
through the limitation in time dimension that previous stud-
ies had. As a result, population distribution in full time series
is generated.
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